mirror of
https://github.com/arnaucube/arbo.git
synced 2026-01-09 07:21:28 +01:00
Add AddBatch CaseC
CASE C: ALMOST CASE B --> if Tree has few Leafs (but numLeafs>=minLeafsThreshold)
==============================================================================
- Use A, B, G, F as Roots of subtrees
- Do CASE B for each subtree
- Then go from L to the Root
R
/ \
/ \
/ \
* *
/ | / \
/ | / \
/ | / \
L: A B G D
/ \
/ \
/ \
C *
/ \
/ \
/ \
... ... (nLeafs >= minLeafsThreshold)
This commit is contained in:
215
addbatch.go
215
addbatch.go
@@ -3,6 +3,7 @@ package arbo
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"math"
|
||||
"sort"
|
||||
)
|
||||
|
||||
@@ -25,11 +26,24 @@ the leafs)
|
||||
- Do CASE A for the new Tree, giving the already existing key&values (leafs)
|
||||
from the original Tree + the new key&values to be added from the AddBatch call
|
||||
|
||||
R
|
||||
|
||||
R R
|
||||
/ \ / \
|
||||
A * / \
|
||||
/ \ / \
|
||||
B C * *
|
||||
/ | / \
|
||||
/ | / \
|
||||
/ | / \
|
||||
L: A B G D
|
||||
/ \
|
||||
A *
|
||||
/ \
|
||||
B C
|
||||
/ \
|
||||
C *
|
||||
/ \
|
||||
/ \
|
||||
/ \
|
||||
... ... (nLeafs < minLeafsThreshold)
|
||||
|
||||
|
||||
CASE C: ALMOST CASE B --> if Tree has few Leafs (but numLeafs>=minLeafsThreshold)
|
||||
@@ -54,7 +68,7 @@ L: A B G D
|
||||
/ \
|
||||
/ \
|
||||
/ \
|
||||
D E
|
||||
... ... (nLeafs >= minLeafsThreshold)
|
||||
|
||||
|
||||
|
||||
@@ -123,6 +137,11 @@ Algorithm decision
|
||||
|
||||
*/
|
||||
|
||||
const (
|
||||
minLeafsThreshold = uint64(100) // nolint:gomnd // TMP WIP this will be autocalculated
|
||||
nBuckets = uint64(4) // TMP WIP this will be autocalculated from
|
||||
)
|
||||
|
||||
// AddBatchOpt is the WIP implementation of the AddBatch method in a more
|
||||
// optimized approach.
|
||||
func (t *Tree) AddBatchOpt(keys, values [][]byte) ([]int, error) {
|
||||
@@ -141,42 +160,149 @@ func (t *Tree) AddBatchOpt(keys, values [][]byte) ([]int, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
t.tx, err = t.db.NewTx()
|
||||
t.tx, err = t.db.NewTx() // TODO add t.tx.Commit()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// if nLeafs==0 (root==0): CASE A
|
||||
// CASE A: if nLeafs==0 (root==0)
|
||||
if bytes.Equal(t.root, t.emptyHash) {
|
||||
// sort keys & values by path
|
||||
sortKvs(kvs)
|
||||
return t.buildTreeBottomUp(kvs)
|
||||
}
|
||||
|
||||
// if nLeafs<nBuckets: CASE B
|
||||
// CASE B: if nLeafs<nBuckets
|
||||
nLeafs, err := t.GetNLeafs()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
minLeafsThreshold := uint64(100) // nolint:gomnd // TMP WIP
|
||||
if nLeafs < minLeafsThreshold {
|
||||
// get already existing keys
|
||||
aKs, aVs, err := t.getLeafs()
|
||||
if nLeafs < minLeafsThreshold { // CASE B
|
||||
invalids, excedents, err := t.caseB(0, kvs)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
// add the excedents
|
||||
for i := 0; i < len(excedents); i++ {
|
||||
err = t.add(0, excedents[i].k, excedents[i].v)
|
||||
if err != nil {
|
||||
invalids = append(invalids, excedents[i].pos)
|
||||
}
|
||||
}
|
||||
return invalids, nil
|
||||
}
|
||||
|
||||
// CASE C: if nLeafs>=minLeafsThreshold && (nLeafs/nBuckets) < minLeafsThreshold
|
||||
// available parallelization, will need to be a power of 2 (2**n)
|
||||
var excedents []kv
|
||||
l := int(math.Log2(float64(nBuckets)))
|
||||
if nLeafs >= minLeafsThreshold && (nLeafs/nBuckets) < minLeafsThreshold {
|
||||
// TODO move to own function
|
||||
// 1. go down until level L (L=log2(nBuckets))
|
||||
keysAtL, err := t.getKeysAtLevel(l + 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
buckets := splitInBuckets(kvs, nBuckets)
|
||||
|
||||
// 2. use keys at level L as roots of the subtrees under each one
|
||||
var subRoots [][]byte
|
||||
// TODO parallelize
|
||||
for i := 0; i < len(keysAtL); i++ {
|
||||
bucketTree := Tree{tx: t.tx, db: t.db, maxLevels: t.maxLevels,
|
||||
hashFunction: t.hashFunction, root: keysAtL[i]}
|
||||
|
||||
// 3. and do CASE B for each
|
||||
_, bucketExcedents, err := bucketTree.caseB(l, buckets[i])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
excedents = append(excedents, bucketExcedents...)
|
||||
subRoots = append(subRoots, bucketTree.root)
|
||||
}
|
||||
// 4. go upFromKeys from the new roots of the subtrees
|
||||
newRoot, err := t.upFromKeys(subRoots)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
t.root = newRoot
|
||||
|
||||
var invalids []int
|
||||
for i := 0; i < len(excedents); i++ {
|
||||
// Add until the level L
|
||||
err = t.add(0, excedents[i].k, excedents[i].v)
|
||||
if err != nil {
|
||||
invalids = append(invalids, excedents[i].pos) // TODO WIP
|
||||
}
|
||||
}
|
||||
|
||||
return invalids, nil
|
||||
}
|
||||
|
||||
// TODO store t.root into DB
|
||||
// TODO update NLeafs from DB
|
||||
|
||||
return nil, fmt.Errorf("UNIMPLEMENTED")
|
||||
}
|
||||
|
||||
func (t *Tree) caseB(l int, kvs []kv) ([]int, []kv, error) {
|
||||
// get already existing keys
|
||||
aKs, aVs, err := t.getLeafs(t.root)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
aKvs, err := t.keysValuesToKvs(aKs, aVs)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
return nil, nil, err
|
||||
}
|
||||
// add already existing key-values to the inputted key-values
|
||||
kvs = append(kvs, aKvs...)
|
||||
|
||||
// proceed with CASE A
|
||||
sortKvs(kvs)
|
||||
return t.buildTreeBottomUp(kvs)
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("UNIMPLEMENTED")
|
||||
// cutPowerOfTwo, the excedent add it as normal Tree.Add
|
||||
kvsP2, kvsNonP2 := cutPowerOfTwo(kvs)
|
||||
invalids, err := t.buildTreeBottomUp(kvsP2)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
// return the excedents which will be added at the full tree at the end
|
||||
return invalids, kvsNonP2, nil
|
||||
}
|
||||
|
||||
func splitInBuckets(kvs []kv, nBuckets uint64) [][]kv {
|
||||
buckets := make([][]kv, nBuckets)
|
||||
// 1. classify the keyvalues into buckets
|
||||
for i := 0; i < len(kvs); i++ {
|
||||
pair := kvs[i]
|
||||
|
||||
bucketnum := keyToBucket(pair.k, int(nBuckets))
|
||||
buckets[bucketnum] = append(buckets[bucketnum], pair)
|
||||
}
|
||||
return buckets
|
||||
}
|
||||
|
||||
// TODO rename in a more 'real' name (calculate bucket from/for key)
|
||||
func keyToBucket(k []byte, nBuckets int) int {
|
||||
nLevels := int(math.Log2(float64(nBuckets)))
|
||||
b := make([]int, nBuckets)
|
||||
for i := 0; i < nBuckets; i++ {
|
||||
b[i] = i
|
||||
}
|
||||
r := b
|
||||
mid := len(r) / 2 //nolint:gomnd
|
||||
for i := 0; i < nLevels; i++ {
|
||||
if int(k[i/8]&(1<<(i%8))) != 0 {
|
||||
r = r[mid:]
|
||||
mid = len(r) / 2 //nolint:gomnd
|
||||
} else {
|
||||
r = r[:mid]
|
||||
mid = len(r) / 2 //nolint:gomnd
|
||||
}
|
||||
}
|
||||
return r[0]
|
||||
}
|
||||
|
||||
type kv struct {
|
||||
@@ -241,7 +367,8 @@ func (t *Tree) kvsToKeysValues(kvs []kv) ([][]byte, [][]byte) {
|
||||
}
|
||||
*/
|
||||
|
||||
// keys & values must be sorted by path, and must be length multiple of 2
|
||||
// keys & values must be sorted by path, and the array ks must be length
|
||||
// multiple of 2
|
||||
// TODO return index of failed keyvaules
|
||||
func (t *Tree) buildTreeBottomUp(kvs []kv) ([]int, error) {
|
||||
// build the leafs
|
||||
@@ -258,6 +385,7 @@ func (t *Tree) buildTreeBottomUp(kvs []kv) ([]int, error) {
|
||||
}
|
||||
leafKeys[i] = leafKey
|
||||
}
|
||||
// TODO parallelize t.upFromKeys until level log2(nBuckets) is reached
|
||||
r, err := t.upFromKeys(leafKeys)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -266,6 +394,8 @@ func (t *Tree) buildTreeBottomUp(kvs []kv) ([]int, error) {
|
||||
return nil, nil
|
||||
}
|
||||
|
||||
// keys & values must be sorted by path, and the array ks must be length
|
||||
// multiple of 2
|
||||
func (t *Tree) upFromKeys(ks [][]byte) ([]byte, error) {
|
||||
if len(ks) == 1 {
|
||||
return ks[0], nil
|
||||
@@ -287,9 +417,9 @@ func (t *Tree) upFromKeys(ks [][]byte) ([]byte, error) {
|
||||
return t.upFromKeys(rKs)
|
||||
}
|
||||
|
||||
func (t *Tree) getLeafs() ([][]byte, [][]byte, error) {
|
||||
func (t *Tree) getLeafs(root []byte) ([][]byte, [][]byte, error) {
|
||||
var ks, vs [][]byte
|
||||
err := t.Iterate(func(k, v []byte) {
|
||||
err := t.iter(root, func(k, v []byte) {
|
||||
if v[0] != PrefixValueLeaf {
|
||||
return
|
||||
}
|
||||
@@ -299,3 +429,52 @@ func (t *Tree) getLeafs() ([][]byte, [][]byte, error) {
|
||||
})
|
||||
return ks, vs, err
|
||||
}
|
||||
|
||||
func (t *Tree) getKeysAtLevel(l int) ([][]byte, error) {
|
||||
var keys [][]byte
|
||||
err := t.iterWithStop(t.root, 0, func(currLvl int, k, v []byte) bool {
|
||||
if currLvl == l {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
if currLvl >= l {
|
||||
return true // to stop the iter from going down
|
||||
}
|
||||
return false
|
||||
})
|
||||
|
||||
return keys, err
|
||||
}
|
||||
|
||||
// cutPowerOfTwo returns []kv of length that is a power of 2, and a second []kv
|
||||
// with the extra elements that don't fit in a power of 2 length
|
||||
func cutPowerOfTwo(kvs []kv) ([]kv, []kv) {
|
||||
x := len(kvs)
|
||||
if (x & (x - 1)) != 0 {
|
||||
p2 := highestPowerOfTwo(x)
|
||||
return kvs[:p2], kvs[p2:]
|
||||
}
|
||||
return kvs, nil
|
||||
}
|
||||
|
||||
func highestPowerOfTwo(n int) int {
|
||||
res := 0
|
||||
for i := n; i >= 1; i-- {
|
||||
if (i & (i - 1)) == 0 {
|
||||
res = i
|
||||
break
|
||||
}
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// func computeSimpleAddCost(nLeafs int) int {
|
||||
// // nLvls 2^nLvls
|
||||
// nLvls := int(math.Log2(float64(nLeafs)))
|
||||
// return nLvls * int(math.Pow(2, float64(nLvls)))
|
||||
// }
|
||||
//
|
||||
// func computeBottomUpAddCost(nLeafs int) int {
|
||||
// // 2^nLvls * 2 - 1
|
||||
// nLvls := int(math.Log2(float64(nLeafs)))
|
||||
// return (int(math.Pow(2, float64(nLvls))) * 2) - 1
|
||||
// }
|
||||
|
||||
221
addbatch_test.go
221
addbatch_test.go
@@ -1,6 +1,7 @@
|
||||
package arbo
|
||||
|
||||
import (
|
||||
"encoding/hex"
|
||||
"fmt"
|
||||
"math/big"
|
||||
"testing"
|
||||
@@ -99,3 +100,223 @@ func TestAddBatchCaseB(t *testing.T) {
|
||||
// check that both trees roots are equal
|
||||
c.Check(tree2.Root(), qt.DeepEquals, tree.Root())
|
||||
}
|
||||
|
||||
func TestGetKeysAtLevel(t *testing.T) {
|
||||
c := qt.New(t)
|
||||
|
||||
tree, err := NewTree(memory.NewMemoryStorage(), 100, HashFunctionPoseidon)
|
||||
c.Assert(err, qt.IsNil)
|
||||
defer tree.db.Close()
|
||||
|
||||
for i := 0; i < 32; i++ {
|
||||
k := BigIntToBytes(big.NewInt(int64(i)))
|
||||
v := BigIntToBytes(big.NewInt(int64(i * 2)))
|
||||
if err := tree.Add(k, v); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
keys, err := tree.getKeysAtLevel(2)
|
||||
c.Assert(err, qt.IsNil)
|
||||
expected := []string{
|
||||
"a5d5f14fce7348e40751496cf25d107d91b0bd043435b9577d778a01f8aa6111",
|
||||
"e9e8dd9b28a7f81d1ff34cb5cefc0146dd848b31031a427b79bdadb62e7f6910",
|
||||
}
|
||||
for i := 0; i < len(keys); i++ {
|
||||
c.Assert(hex.EncodeToString(keys[i]), qt.Equals, expected[i])
|
||||
}
|
||||
|
||||
keys, err = tree.getKeysAtLevel(3)
|
||||
c.Assert(err, qt.IsNil)
|
||||
expected = []string{
|
||||
"9f12c13e52bca96ad4882a26558e48ab67ddd63e062b839207e893d961390f01",
|
||||
"16d246dd6826ec7346c7328f11c4261facf82d4689f33263ff6e207956a77f21",
|
||||
"4a22cc901c6337daa17a431fa20170684b710e5f551509511492ec24e81a8f2f",
|
||||
"470d61abcbd154977bffc9a9ec5a8daff0caabcf2a25e8441f604c79daa0f82d",
|
||||
}
|
||||
for i := 0; i < len(keys); i++ {
|
||||
c.Assert(hex.EncodeToString(keys[i]), qt.Equals, expected[i])
|
||||
}
|
||||
|
||||
keys, err = tree.getKeysAtLevel(4)
|
||||
c.Assert(err, qt.IsNil)
|
||||
expected = []string{
|
||||
"7a5d1c81f7b96318012de3417e53d4f13df5b1337718651cd29d0cb0a66edd20",
|
||||
"3408213e4e844bdf3355eb8781c74e31626812898c2dbe141ed6d2c92256fc1c",
|
||||
"dfd8a4d0b6954a3e9f3892e655b58d456eeedf9367f27dfdd9bc2dd6a5577312",
|
||||
"9e99fbec06fb2a6725997c12c4995f62725eb4cce4808523a5a5e80cca64b007",
|
||||
"0befa1e070231dbf4e8ff841c05878cdec823e0c09594c24910a248b3ff5a628",
|
||||
"b7131b0a15c772a57005a4dc5d0d6dd4b3414f5d9ee7408ce5e86c5ab3520e04",
|
||||
"6d1abe0364077846a56bab1deb1a04883eb796b74fe531a7676a9a370f83ab21",
|
||||
"4270116394bede69cf9cd72069eca018238080380bef5de75be8dcbbe968e105",
|
||||
}
|
||||
for i := 0; i < len(keys); i++ {
|
||||
c.Assert(hex.EncodeToString(keys[i]), qt.Equals, expected[i])
|
||||
}
|
||||
}
|
||||
|
||||
func TestSplitInBuckets(t *testing.T) {
|
||||
c := qt.New(t)
|
||||
|
||||
nLeafs := 16
|
||||
kvs := make([]kv, nLeafs)
|
||||
for i := 0; i < nLeafs; i++ {
|
||||
k := BigIntToBytes(big.NewInt(int64(i)))
|
||||
v := BigIntToBytes(big.NewInt(int64(i * 2)))
|
||||
keyPath := make([]byte, 32)
|
||||
copy(keyPath[:], k)
|
||||
kvs[i].pos = i
|
||||
kvs[i].keyPath = k
|
||||
kvs[i].k = k
|
||||
kvs[i].v = v
|
||||
}
|
||||
|
||||
// check keyToBucket results for 4 buckets & 8 keys
|
||||
c.Assert(keyToBucket(kvs[0].k, 4), qt.Equals, 0)
|
||||
c.Assert(keyToBucket(kvs[1].k, 4), qt.Equals, 2)
|
||||
c.Assert(keyToBucket(kvs[2].k, 4), qt.Equals, 1)
|
||||
c.Assert(keyToBucket(kvs[3].k, 4), qt.Equals, 3)
|
||||
c.Assert(keyToBucket(kvs[4].k, 4), qt.Equals, 0)
|
||||
c.Assert(keyToBucket(kvs[5].k, 4), qt.Equals, 2)
|
||||
c.Assert(keyToBucket(kvs[6].k, 4), qt.Equals, 1)
|
||||
c.Assert(keyToBucket(kvs[7].k, 4), qt.Equals, 3)
|
||||
|
||||
// check keyToBucket results for 8 buckets & 8 keys
|
||||
c.Assert(keyToBucket(kvs[0].k, 8), qt.Equals, 0)
|
||||
c.Assert(keyToBucket(kvs[1].k, 8), qt.Equals, 4)
|
||||
c.Assert(keyToBucket(kvs[2].k, 8), qt.Equals, 2)
|
||||
c.Assert(keyToBucket(kvs[3].k, 8), qt.Equals, 6)
|
||||
c.Assert(keyToBucket(kvs[4].k, 8), qt.Equals, 1)
|
||||
c.Assert(keyToBucket(kvs[5].k, 8), qt.Equals, 5)
|
||||
c.Assert(keyToBucket(kvs[6].k, 8), qt.Equals, 3)
|
||||
c.Assert(keyToBucket(kvs[7].k, 8), qt.Equals, 7)
|
||||
|
||||
buckets := splitInBuckets(kvs, 4)
|
||||
|
||||
expected := [][]string{
|
||||
{
|
||||
"00000000", // bucket 0
|
||||
"08000000",
|
||||
"04000000",
|
||||
"0c000000",
|
||||
},
|
||||
{
|
||||
"02000000", // bucket 1
|
||||
"0a000000",
|
||||
"06000000",
|
||||
"0e000000",
|
||||
},
|
||||
{
|
||||
"01000000", // bucket 2
|
||||
"09000000",
|
||||
"05000000",
|
||||
"0d000000",
|
||||
},
|
||||
{
|
||||
"03000000", // bucket 3
|
||||
"0b000000",
|
||||
"07000000",
|
||||
"0f000000",
|
||||
},
|
||||
}
|
||||
|
||||
for i := 0; i < len(buckets); i++ {
|
||||
sortKvs(buckets[i])
|
||||
c.Assert(len(buckets[i]), qt.Equals, len(expected[i]))
|
||||
for j := 0; j < len(buckets[i]); j++ {
|
||||
c.Check(hex.EncodeToString(buckets[i][j].k[:4]), qt.Equals, expected[i][j])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestAddBatchCaseC(t *testing.T) {
|
||||
c := qt.New(t)
|
||||
|
||||
nLeafs := 1024
|
||||
|
||||
tree, err := NewTree(memory.NewMemoryStorage(), 100, HashFunctionPoseidon)
|
||||
c.Assert(err, qt.IsNil)
|
||||
defer tree.db.Close()
|
||||
|
||||
start := time.Now()
|
||||
for i := 0; i < nLeafs; i++ {
|
||||
k := BigIntToBytes(big.NewInt(int64(i)))
|
||||
v := BigIntToBytes(big.NewInt(int64(i * 2)))
|
||||
if err := tree.Add(k, v); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
fmt.Println(time.Since(start))
|
||||
|
||||
tree2, err := NewTree(memory.NewMemoryStorage(), 100, HashFunctionPoseidon)
|
||||
c.Assert(err, qt.IsNil)
|
||||
defer tree2.db.Close()
|
||||
|
||||
// add the initial leafs to fill a bit the tree before calling the
|
||||
// AddBatch method
|
||||
for i := 0; i < 101; i++ { // TMP TODO use const minLeafsThreshold-1 once ready
|
||||
k := BigIntToBytes(big.NewInt(int64(i)))
|
||||
v := BigIntToBytes(big.NewInt(int64(i * 2)))
|
||||
if err := tree2.Add(k, v); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
// tree2.PrintGraphviz(nil)
|
||||
|
||||
var keys, values [][]byte
|
||||
for i := 101; i < nLeafs; i++ {
|
||||
k := BigIntToBytes(big.NewInt(int64(i)))
|
||||
v := BigIntToBytes(big.NewInt(int64(i * 2)))
|
||||
keys = append(keys, k)
|
||||
values = append(values, v)
|
||||
}
|
||||
start = time.Now()
|
||||
indexes, err := tree2.AddBatchOpt(keys, values)
|
||||
c.Assert(err, qt.IsNil)
|
||||
fmt.Println(time.Since(start))
|
||||
c.Check(len(indexes), qt.Equals, 0)
|
||||
|
||||
// check that both trees roots are equal
|
||||
c.Check(tree2.Root(), qt.DeepEquals, tree.Root())
|
||||
|
||||
// tree.PrintGraphviz(nil)
|
||||
// tree2.PrintGraphviz(nil)
|
||||
// // tree.PrintGraphvizFirstNLevels(nil, 4)
|
||||
// // tree2.PrintGraphvizFirstNLevels(nil, 4)
|
||||
// fmt.Println("TREE")
|
||||
// printLeafs("t1.txt", tree)
|
||||
// fmt.Println("TREE2")
|
||||
// printLeafs("t2.txt", tree2)
|
||||
}
|
||||
|
||||
// func printLeafs(name string, t *Tree) {
|
||||
// w := bytes.NewBufferString("")
|
||||
//
|
||||
// err := t.Iterate(func(k, v []byte) {
|
||||
// if v[0] != PrefixValueLeaf {
|
||||
// return
|
||||
// }
|
||||
// leafK, _ := readLeafValue(v)
|
||||
// fmt.Fprintf(w, hex.EncodeToString(leafK[:4])+"\n")
|
||||
// })
|
||||
// if err != nil {
|
||||
// panic(err)
|
||||
// }
|
||||
// err = ioutil.WriteFile(name, w.Bytes(), 0644)
|
||||
// if err != nil {
|
||||
// panic(err)
|
||||
// }
|
||||
//
|
||||
// }
|
||||
|
||||
// func TestComputeCosts(t *testing.T) {
|
||||
// fmt.Println(computeSimpleAddCost(10))
|
||||
// fmt.Println(computeBottomUpAddCost(10))
|
||||
//
|
||||
// fmt.Println(computeSimpleAddCost(1024))
|
||||
// fmt.Println(computeBottomUpAddCost(1024))
|
||||
// }
|
||||
|
||||
// TODO test tree with nLeafs > minLeafsThreshold, but that at level L, there is
|
||||
// less keys than nBuckets (so CASE C could be applied if first few leafs are
|
||||
// added to balance the tree)
|
||||
|
||||
94
tree.go
94
tree.go
@@ -128,7 +128,7 @@ func (t *Tree) AddBatch(keys, values [][]byte) ([]int, error) {
|
||||
|
||||
var indexes []int
|
||||
for i := 0; i < len(keys); i++ {
|
||||
err = t.add(keys[i], values[i])
|
||||
err = t.add(0, keys[i], values[i])
|
||||
if err != nil {
|
||||
indexes = append(indexes, i)
|
||||
}
|
||||
@@ -163,7 +163,7 @@ func (t *Tree) Add(k, v []byte) error {
|
||||
return err
|
||||
}
|
||||
|
||||
err = t.add(k, v)
|
||||
err = t.add(0, k, v) // add from level 0
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -178,7 +178,7 @@ func (t *Tree) Add(k, v []byte) error {
|
||||
return t.tx.Commit()
|
||||
}
|
||||
|
||||
func (t *Tree) add(k, v []byte) error {
|
||||
func (t *Tree) add(fromLvl int, k, v []byte) error {
|
||||
// TODO check validity of key & value (for the Tree.HashFunction type)
|
||||
|
||||
keyPath := make([]byte, t.hashFunction.Len())
|
||||
@@ -187,7 +187,7 @@ func (t *Tree) add(k, v []byte) error {
|
||||
path := getPath(t.maxLevels, keyPath)
|
||||
// go down to the leaf
|
||||
var siblings [][]byte
|
||||
_, _, siblings, err := t.down(k, t.root, siblings, path, 0, false)
|
||||
_, _, siblings, err := t.down(k, t.root, siblings, path, fromLvl, false)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -217,9 +217,9 @@ func (t *Tree) add(k, v []byte) error {
|
||||
|
||||
// down goes down to the leaf recursively
|
||||
func (t *Tree) down(newKey, currKey []byte, siblings [][]byte,
|
||||
path []bool, l int, getLeaf bool) (
|
||||
path []bool, currLvl int, getLeaf bool) (
|
||||
[]byte, []byte, [][]byte, error) {
|
||||
if l > t.maxLevels-1 {
|
||||
if currLvl > t.maxLevels-1 {
|
||||
return nil, nil, nil, fmt.Errorf("max level")
|
||||
}
|
||||
var err error
|
||||
@@ -254,7 +254,7 @@ func (t *Tree) down(newKey, currKey []byte, siblings [][]byte,
|
||||
|
||||
// if currKey is already used, go down until paths diverge
|
||||
oldPath := getPath(t.maxLevels, oldLeafKeyFull)
|
||||
siblings, err = t.downVirtually(siblings, currKey, newKey, oldPath, path, l)
|
||||
siblings, err = t.downVirtually(siblings, currKey, newKey, oldPath, path, currLvl)
|
||||
if err != nil {
|
||||
return nil, nil, nil, err
|
||||
}
|
||||
@@ -267,16 +267,16 @@ func (t *Tree) down(newKey, currKey []byte, siblings [][]byte,
|
||||
PrefixValueLen+t.hashFunction.Len()*2, len(currValue))
|
||||
}
|
||||
// collect siblings while going down
|
||||
if path[l] {
|
||||
if path[currLvl] {
|
||||
// right
|
||||
lChild, rChild := readIntermediateChilds(currValue)
|
||||
siblings = append(siblings, lChild)
|
||||
return t.down(newKey, rChild, siblings, path, l+1, getLeaf)
|
||||
return t.down(newKey, rChild, siblings, path, currLvl+1, getLeaf)
|
||||
}
|
||||
// left
|
||||
lChild, rChild := readIntermediateChilds(currValue)
|
||||
siblings = append(siblings, rChild)
|
||||
return t.down(newKey, lChild, siblings, path, l+1, getLeaf)
|
||||
return t.down(newKey, lChild, siblings, path, currLvl+1, getLeaf)
|
||||
default:
|
||||
return nil, nil, nil, fmt.Errorf("invalid value")
|
||||
}
|
||||
@@ -285,16 +285,16 @@ func (t *Tree) down(newKey, currKey []byte, siblings [][]byte,
|
||||
// downVirtually is used when in a leaf already exists, and a new leaf which
|
||||
// shares the path until the existing leaf is being added
|
||||
func (t *Tree) downVirtually(siblings [][]byte, oldKey, newKey []byte, oldPath,
|
||||
newPath []bool, l int) ([][]byte, error) {
|
||||
newPath []bool, currLvl int) ([][]byte, error) {
|
||||
var err error
|
||||
if l > t.maxLevels-1 {
|
||||
return nil, fmt.Errorf("max virtual level %d", l)
|
||||
if currLvl > t.maxLevels-1 {
|
||||
return nil, fmt.Errorf("max virtual level %d", currLvl)
|
||||
}
|
||||
|
||||
if oldPath[l] == newPath[l] {
|
||||
if oldPath[currLvl] == newPath[currLvl] {
|
||||
siblings = append(siblings, t.emptyHash)
|
||||
|
||||
siblings, err = t.downVirtually(siblings, oldKey, newKey, oldPath, newPath, l+1)
|
||||
siblings, err = t.downVirtually(siblings, oldKey, newKey, oldPath, newPath, currLvl+1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -307,16 +307,16 @@ func (t *Tree) downVirtually(siblings [][]byte, oldKey, newKey []byte, oldPath,
|
||||
}
|
||||
|
||||
// up goes up recursively updating the intermediate nodes
|
||||
func (t *Tree) up(key []byte, siblings [][]byte, path []bool, l int) ([]byte, error) {
|
||||
func (t *Tree) up(key []byte, siblings [][]byte, path []bool, currLvl int) ([]byte, error) {
|
||||
var k, v []byte
|
||||
var err error
|
||||
if path[l] {
|
||||
k, v, err = newIntermediate(t.hashFunction, siblings[l], key)
|
||||
if path[currLvl] {
|
||||
k, v, err = newIntermediate(t.hashFunction, siblings[currLvl], key)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
} else {
|
||||
k, v, err = newIntermediate(t.hashFunction, key, siblings[l])
|
||||
k, v, err = newIntermediate(t.hashFunction, key, siblings[currLvl])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -326,12 +326,12 @@ func (t *Tree) up(key []byte, siblings [][]byte, path []bool, l int) ([]byte, er
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if l == 0 {
|
||||
if currLvl == 0 {
|
||||
// reached the root
|
||||
return k, nil
|
||||
}
|
||||
|
||||
return t.up(k, siblings, path, l-1)
|
||||
return t.up(k, siblings, path, currLvl-1)
|
||||
}
|
||||
|
||||
func newLeafValue(hashFunc HashFunction, k, v []byte) ([]byte, []byte, error) {
|
||||
@@ -666,24 +666,36 @@ func (t *Tree) Iterate(f func([]byte, []byte)) error {
|
||||
return t.iter(t.root, f)
|
||||
}
|
||||
|
||||
func (t *Tree) iter(k []byte, f func([]byte, []byte)) error {
|
||||
// IterateWithStop does the same than Iterate, but with int for the current
|
||||
// level, and a boolean parameter used by the passed function, is to indicate to
|
||||
// stop iterating on the branch when the method returns 'true'.
|
||||
func (t *Tree) IterateWithStop(f func(int, []byte, []byte) bool) error {
|
||||
t.updateAccessTime()
|
||||
return t.iterWithStop(t.root, 0, f)
|
||||
}
|
||||
|
||||
func (t *Tree) iterWithStop(k []byte, currLevel int, f func(int, []byte, []byte) bool) error {
|
||||
v, err := t.dbGet(k)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
currLevel++
|
||||
|
||||
switch v[0] {
|
||||
case PrefixValueEmpty:
|
||||
f(k, v)
|
||||
f(currLevel, k, v)
|
||||
case PrefixValueLeaf:
|
||||
f(k, v)
|
||||
f(currLevel, k, v)
|
||||
case PrefixValueIntermediate:
|
||||
f(k, v)
|
||||
stop := f(currLevel, k, v)
|
||||
if stop {
|
||||
return nil
|
||||
}
|
||||
l, r := readIntermediateChilds(v)
|
||||
if err = t.iter(l, f); err != nil {
|
||||
if err = t.iterWithStop(l, currLevel, f); err != nil {
|
||||
return err
|
||||
}
|
||||
if err = t.iter(r, f); err != nil {
|
||||
if err = t.iterWithStop(r, currLevel, f); err != nil {
|
||||
return err
|
||||
}
|
||||
default:
|
||||
@@ -692,6 +704,14 @@ func (t *Tree) iter(k []byte, f func([]byte, []byte)) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func (t *Tree) iter(k []byte, f func([]byte, []byte)) error {
|
||||
f2 := func(currLvl int, k, v []byte) bool {
|
||||
f(k, v)
|
||||
return false
|
||||
}
|
||||
return t.iterWithStop(k, 0, f2)
|
||||
}
|
||||
|
||||
// Dump exports all the Tree leafs in a byte array of length:
|
||||
// [ N * (2+len(k+v)) ]. Where N is the number of key-values, and for each k+v:
|
||||
// [ 1 byte | 1 byte | S bytes | len(v) bytes ]
|
||||
@@ -768,12 +788,22 @@ func (t *Tree) ImportDump(b []byte) error {
|
||||
// Graphviz iterates across the full tree to generate a string Graphviz
|
||||
// representation of the tree and writes it to w
|
||||
func (t *Tree) Graphviz(w io.Writer, rootKey []byte) error {
|
||||
return t.GraphvizFirstNLevels(w, rootKey, t.maxLevels)
|
||||
}
|
||||
|
||||
// GraphvizFirstNLevels iterates across the first NLevels of the tree to
|
||||
// generate a string Graphviz representation of the first NLevels of the tree
|
||||
// and writes it to w
|
||||
func (t *Tree) GraphvizFirstNLevels(w io.Writer, rootKey []byte, untilLvl int) error {
|
||||
fmt.Fprintf(w, `digraph hierarchy {
|
||||
node [fontname=Monospace,fontsize=10,shape=box]
|
||||
`)
|
||||
nChars := 4
|
||||
nEmpties := 0
|
||||
err := t.Iterate(func(k, v []byte) {
|
||||
err := t.iterWithStop(t.root, 0, func(currLvl int, k, v []byte) bool {
|
||||
if currLvl == untilLvl {
|
||||
return true // to stop the iter from going down
|
||||
}
|
||||
switch v[0] {
|
||||
case PrefixValueEmpty:
|
||||
case PrefixValueLeaf:
|
||||
@@ -807,6 +837,7 @@ node [fontname=Monospace,fontsize=10,shape=box]
|
||||
fmt.Fprint(w, eStr)
|
||||
default:
|
||||
}
|
||||
return false
|
||||
})
|
||||
fmt.Fprintf(w, "}\n")
|
||||
return err
|
||||
@@ -814,13 +845,18 @@ node [fontname=Monospace,fontsize=10,shape=box]
|
||||
|
||||
// PrintGraphviz prints the output of Tree.Graphviz
|
||||
func (t *Tree) PrintGraphviz(rootKey []byte) error {
|
||||
return t.PrintGraphvizFirstNLevels(rootKey, t.maxLevels)
|
||||
}
|
||||
|
||||
// PrintGraphvizFirstNLevels prints the output of Tree.GraphvizFirstNLevels
|
||||
func (t *Tree) PrintGraphvizFirstNLevels(rootKey []byte, untilLvl int) error {
|
||||
if rootKey == nil {
|
||||
rootKey = t.Root()
|
||||
}
|
||||
w := bytes.NewBufferString("")
|
||||
fmt.Fprintf(w,
|
||||
"--------\nGraphviz of the Tree with Root "+hex.EncodeToString(rootKey)+":\n")
|
||||
err := t.Graphviz(w, nil)
|
||||
err := t.GraphvizFirstNLevels(w, nil, untilLvl)
|
||||
if err != nil {
|
||||
fmt.Println(w)
|
||||
return err
|
||||
|
||||
2
utils.go
2
utils.go
@@ -13,7 +13,7 @@ func SwapEndianness(b []byte) []byte {
|
||||
|
||||
// BigIntToBytes converts a *big.Int into a byte array in Little-Endian
|
||||
func BigIntToBytes(bi *big.Int) []byte {
|
||||
var b [32]byte
|
||||
var b [32]byte // TODO make the length depending on the tree.hashFunction.Len()
|
||||
copy(b[:], SwapEndianness(bi.Bytes()))
|
||||
return b[:]
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user