mirror of
https://github.com/arnaucube/ark-curves-cherry-picked.git
synced 2026-01-08 15:01:29 +01:00
Fast cofactor clearing for BLS12-377 (#141)
* add faster cofactor clearing and tests for g1 * add faster cofactor clearing and tests for g2 parameters of endomorphisms are wrong for now * add h_eff to g2 tests for correctness test * improve cofactor tests g2 * add a test for psi(psi(P)) == psi2(P) * fix bls12-377 psi & psi2 computation parameters * rename const to DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0 and make private * fix clippy warnings in changed code * remove bls12-381-specific in line comment * update code comments, make methods private * master should be patched with master * update changelog
This commit is contained in:
@@ -22,7 +22,7 @@
|
||||
- [\#74](https://github.com/arkworks-rs/curves/pull/74) Use Scott's subgroup membership tests for `G1` and `G2` of BLS12-381.
|
||||
- [\#103](https://github.com/arkworks-rs/curves/pull/103) Faster cofactor clearing for BLS12-381.
|
||||
- [\#107](https://github.com/arkworks-rs/curves/pull/107/) Use 2-NAF of `ATE_LOOP_COUNT` to speed up the Miller loop in MNT curves.
|
||||
|
||||
- [\#141](https://github.com/arkworks-rs/curves/pull/103) Faster cofactor clearing for BLS12-377.
|
||||
|
||||
### Bug fixes
|
||||
|
||||
|
||||
12
Cargo.toml
12
Cargo.toml
@@ -64,9 +64,9 @@ debug-assertions = true
|
||||
debug = true
|
||||
|
||||
[patch.crates-io]
|
||||
ark-ff = { git = "https://github.com/arkworks-rs/algebra/", branch = "release-0.4" }
|
||||
ark-ec = { git = "https://github.com/arkworks-rs/algebra/", branch = "release-0.4" }
|
||||
ark-poly = { git = "https://github.com/arkworks-rs/algebra/", branch = "release-0.4" }
|
||||
ark-serialize = { git = "https://github.com/arkworks-rs/algebra/", branch = "release-0.4" }
|
||||
ark-algebra-test-templates = { git = "https://github.com/arkworks-rs/algebra/", branch = "release-0.4" }
|
||||
ark-r1cs-std = { git = "https://github.com/arkworks-rs/r1cs-std/", branch = "release-0.4" }
|
||||
ark-ff = { git = "https://github.com/arkworks-rs/algebra/" }
|
||||
ark-ec = { git = "https://github.com/arkworks-rs/algebra/" }
|
||||
ark-poly = { git = "https://github.com/arkworks-rs/algebra/" }
|
||||
ark-serialize = { git = "https://github.com/arkworks-rs/algebra/" }
|
||||
ark-algebra-test-templates = { git = "https://github.com/arkworks-rs/algebra/" }
|
||||
ark-r1cs-std = { git = "https://github.com/arkworks-rs/r1cs-std/" }
|
||||
@@ -1,12 +1,15 @@
|
||||
use ark_ec::models::{
|
||||
short_weierstrass::{Affine as SWAffine, SWCurveConfig},
|
||||
twisted_edwards::{
|
||||
Affine as TEAffine, MontCurveConfig, Projective as TEProjective, TECurveConfig,
|
||||
use ark_ec::{
|
||||
bls12::Bls12Config,
|
||||
models::{
|
||||
short_weierstrass::{Affine as SWAffine, SWCurveConfig},
|
||||
twisted_edwards::{
|
||||
Affine as TEAffine, MontCurveConfig, Projective as TEProjective, TECurveConfig,
|
||||
},
|
||||
},
|
||||
CurveConfig,
|
||||
};
|
||||
use ark_ff::{Field, MontFp, Zero};
|
||||
use core::ops::Neg;
|
||||
use ark_ff::{Field, MontFp, PrimeField, Zero};
|
||||
use ark_std::{ops::Neg, One};
|
||||
|
||||
use crate::{Fq, Fr};
|
||||
|
||||
@@ -39,6 +42,20 @@ impl SWCurveConfig for Config {
|
||||
fn mul_by_a(_: Self::BaseField) -> Self::BaseField {
|
||||
Self::BaseField::zero()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn clear_cofactor(p: &G1SWAffine) -> G1SWAffine {
|
||||
// Using the effective cofactor.
|
||||
//
|
||||
// It is enough to multiply by (x - 1), instead of (x - 1)^2 / 3
|
||||
let h_eff = x_minus_one().into_bigint();
|
||||
<Config as SWCurveConfig>::mul_affine(p, h_eff.as_ref()).into()
|
||||
}
|
||||
}
|
||||
|
||||
fn x_minus_one() -> Fr {
|
||||
const X: Fr = Fr::from_sign_and_limbs(!crate::Config::X_IS_NEGATIVE, crate::Config::X);
|
||||
X - Fr::one()
|
||||
}
|
||||
|
||||
pub type G1SWAffine = SWAffine<Config>;
|
||||
@@ -209,3 +226,34 @@ pub const TE_GENERATOR_X: Fq = MontFp!("7122256953170913722937026889632370569028
|
||||
/// TE_GENERATOR_Y =
|
||||
/// 6177051365529633638563236407038680211609544222665285371549726196884440490905471891908272386851767077598415378235
|
||||
pub const TE_GENERATOR_Y: Fq = MontFp!("6177051365529633638563236407038680211609544222665285371549726196884440490905471891908272386851767077598415378235");
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
|
||||
use super::*;
|
||||
use crate::g1;
|
||||
use ark_std::{rand::Rng, UniformRand};
|
||||
|
||||
fn sample_unchecked() -> SWAffine<g1::Config> {
|
||||
let mut rng = ark_std::test_rng();
|
||||
loop {
|
||||
let x = Fq::rand(&mut rng);
|
||||
let greatest = rng.gen();
|
||||
|
||||
if let Some(p) = SWAffine::get_point_from_x_unchecked(x, greatest) {
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cofactor_clearing() {
|
||||
const SAMPLES: usize = 100;
|
||||
for _ in 0..SAMPLES {
|
||||
let p: SWAffine<g1::Config> = sample_unchecked();
|
||||
let p = <Config as SWCurveConfig>::clear_cofactor(&p);
|
||||
assert!(p.is_on_curve());
|
||||
assert!(p.is_in_correct_subgroup_assuming_on_curve());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,10 +1,13 @@
|
||||
use ark_ec::{
|
||||
bls12::Bls12Config,
|
||||
models::{short_weierstrass::SWCurveConfig, CurveConfig},
|
||||
short_weierstrass::Affine,
|
||||
short_weierstrass::{Affine, Projective},
|
||||
AffineRepr, CurveGroup, Group,
|
||||
};
|
||||
use ark_ff::{Field, MontFp, Zero};
|
||||
use ark_std::ops::Neg;
|
||||
|
||||
use crate::{g1, Fq, Fq2, Fr};
|
||||
use crate::*;
|
||||
|
||||
pub type G2Affine = Affine<Config>;
|
||||
#[derive(Clone, Default, PartialEq, Eq)]
|
||||
@@ -56,6 +59,36 @@ impl SWCurveConfig for Config {
|
||||
fn mul_by_a(_: Self::BaseField) -> Self::BaseField {
|
||||
Self::BaseField::zero()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn clear_cofactor(p: &G2Affine) -> G2Affine {
|
||||
// Based on Section 4.1 of https://eprint.iacr.org/2017/419.pdf
|
||||
// [h(ψ)]P = [x^2 − x − 1]P + [x − 1]ψ(P) + (ψ^2)(2P)
|
||||
|
||||
let x: &'static [u64] = crate::Config::X;
|
||||
let p_projective = p.into_group();
|
||||
|
||||
// [x]P
|
||||
let x_p = Config::mul_affine(p, x);
|
||||
// ψ(P)
|
||||
let psi_p = p_power_endomorphism(p);
|
||||
// (ψ^2)(2P)
|
||||
let mut psi2_p2 = double_p_power_endomorphism(&p_projective.double());
|
||||
|
||||
// tmp = [x]P + ψ(P)
|
||||
let mut tmp = x_p;
|
||||
tmp += &psi_p;
|
||||
|
||||
// tmp2 = [x^2]P + [x]ψ(P)
|
||||
let mut tmp2: Projective<Config> = tmp;
|
||||
tmp2 = tmp2.mul_bigint(x);
|
||||
|
||||
// add up all the terms
|
||||
psi2_p2 += tmp2;
|
||||
psi2_p2 -= x_p;
|
||||
psi2_p2 += &-psi_p;
|
||||
(psi2_p2 - p_projective).into_affine()
|
||||
}
|
||||
}
|
||||
|
||||
pub const G2_GENERATOR_X: Fq2 = Fq2::new(G2_GENERATOR_X_C0, G2_GENERATOR_X_C1);
|
||||
@@ -76,3 +109,118 @@ pub const G2_GENERATOR_Y_C0: Fq = MontFp!("6316029476829207320938136194393519890
|
||||
/// G2_GENERATOR_Y_C1 =
|
||||
/// 149157405641012693445398062341192467754805999074082136895788947234480009303640899064710353187729182149407503257491
|
||||
pub const G2_GENERATOR_Y_C1: Fq = MontFp!("149157405641012693445398062341192467754805999074082136895788947234480009303640899064710353187729182149407503257491");
|
||||
|
||||
// PSI_X = u^((p-1)/3)
|
||||
const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = Fq2::new(
|
||||
MontFp!(
|
||||
"80949648264912719408558363140637477264845294720710499478137287262712535938301461879813459410946"
|
||||
),
|
||||
Fq::ZERO,
|
||||
);
|
||||
|
||||
// PSI_Y = u^((p-1)/2)
|
||||
const P_POWER_ENDOMORPHISM_COEFF_1: Fq2 = Fq2::new(
|
||||
MontFp!(
|
||||
"216465761340224619389371505802605247630151569547285782856803747159100223055385581585702401816380679166954762214499"),
|
||||
Fq::ZERO,
|
||||
);
|
||||
|
||||
// PSI_2_X = u^((p^2 - 1)/3)
|
||||
const DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0: Fq2 = Fq2::new(
|
||||
MontFp!("80949648264912719408558363140637477264845294720710499478137287262712535938301461879813459410945"),
|
||||
Fq::ZERO
|
||||
);
|
||||
|
||||
/// psi(x,y) is the untwist-Frobenius-twist endomorhism on E'(Fq2)
|
||||
fn p_power_endomorphism(p: &Affine<Config>) -> Affine<Config> {
|
||||
// The p-power endomorphism for G2 is defined as follows:
|
||||
// 1. Note that G2 is defined on curve E': y^2 = x^3 + 1/u.
|
||||
// To map a point (x, y) in E' to (s, t) in E,
|
||||
// one set s = x * (u ^ (1/3)), t = y * (u ^ (1/2)),
|
||||
// because E: y^2 = x^3 + 1.
|
||||
// 2. Apply the Frobenius endomorphism (s, t) => (s', t'),
|
||||
// another point on curve E, where s' = s^p, t' = t^p.
|
||||
// 3. Map the point from E back to E'; that is,
|
||||
// one set x' = s' / ((u) ^ (1/3)), y' = t' / ((u) ^ (1/2)).
|
||||
//
|
||||
// To sum up, it maps
|
||||
// (x,y) -> (x^p * (u ^ ((p-1)/3)), y^p * (u ^ ((p-1)/2)))
|
||||
// as implemented in the code as follows.
|
||||
|
||||
let mut res = *p;
|
||||
res.x.frobenius_map_in_place(1);
|
||||
res.y.frobenius_map_in_place(1);
|
||||
|
||||
res.x *= P_POWER_ENDOMORPHISM_COEFF_0;
|
||||
res.y *= P_POWER_ENDOMORPHISM_COEFF_1;
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
/// For a p-power endomorphism psi(P), compute psi(psi(P))
|
||||
fn double_p_power_endomorphism(p: &Projective<Config>) -> Projective<Config> {
|
||||
// p_power_endomorphism(&p_power_endomorphism(&p.into_affine())).into()
|
||||
let mut res = *p;
|
||||
|
||||
res.x *= DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0;
|
||||
// u^((p^2 - 1)/2) == -1
|
||||
res.y = res.y.neg();
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
|
||||
use super::*;
|
||||
use ark_std::{rand::Rng, UniformRand};
|
||||
|
||||
fn sample_unchecked() -> Affine<g2::Config> {
|
||||
let mut rng = ark_std::test_rng();
|
||||
loop {
|
||||
let x1 = Fq::rand(&mut rng);
|
||||
let x2 = Fq::rand(&mut rng);
|
||||
let greatest = rng.gen();
|
||||
let x = Fq2::new(x1, x2);
|
||||
|
||||
if let Some(p) = Affine::get_point_from_x_unchecked(x, greatest) {
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_psi_2() {
|
||||
let p = sample_unchecked();
|
||||
let psi_p = p_power_endomorphism(&p);
|
||||
let psi2_p_composed = p_power_endomorphism(&psi_p);
|
||||
let psi2_p_optimised = double_p_power_endomorphism(&p.into());
|
||||
|
||||
assert_eq!(psi2_p_composed, psi2_p_optimised);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cofactor_clearing() {
|
||||
let h_eff = &[
|
||||
0x1e34800000000000,
|
||||
0xcf664765b0000003,
|
||||
0x8e8e73ad8a538800,
|
||||
0x78ba279637388559,
|
||||
0xb85860aaaad29276,
|
||||
0xf7ee7c4b03103b45,
|
||||
0x8f6ade35a5c7d769,
|
||||
0xa951764c46f4edd2,
|
||||
0x53648d3d9502abfb,
|
||||
0x1f60243677e306,
|
||||
];
|
||||
const SAMPLES: usize = 10;
|
||||
for _ in 0..SAMPLES {
|
||||
let p: Affine<g2::Config> = sample_unchecked();
|
||||
let optimised = p.clear_cofactor();
|
||||
let naive = g2::Config::mul_affine(&p, h_eff);
|
||||
assert_eq!(optimised.into_group(), naive);
|
||||
assert!(optimised.is_on_curve());
|
||||
assert!(optimised.is_in_correct_subgroup_assuming_on_curve());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -200,11 +200,8 @@ pub const G2_GENERATOR_Y_C0: Fq = MontFp!("1985150602287291935568054521177171638
|
||||
/// 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582
|
||||
pub const G2_GENERATOR_Y_C1: Fq = MontFp!("927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582");
|
||||
|
||||
// psi(x,y) = (x**p * PSI_X, y**p * PSI_Y) is the Frobenius composed
|
||||
// with the quadratic twist and its inverse
|
||||
|
||||
// PSI_X = 1/(u+1)^((p-1)/3)
|
||||
pub const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = Fq2::new(
|
||||
const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = Fq2::new(
|
||||
Fq::ZERO,
|
||||
MontFp!(
|
||||
"4002409555221667392624310435006688643935503118305586438271171395842971157480381377015405980053539358417135540939437"
|
||||
@@ -212,28 +209,30 @@ pub const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = Fq2::new(
|
||||
);
|
||||
|
||||
// PSI_Y = 1/(u+1)^((p-1)/2)
|
||||
pub const P_POWER_ENDOMORPHISM_COEFF_1: Fq2 = Fq2::new(
|
||||
const P_POWER_ENDOMORPHISM_COEFF_1: Fq2 = Fq2::new(
|
||||
MontFp!(
|
||||
"2973677408986561043442465346520108879172042883009249989176415018091420807192182638567116318576472649347015917690530"),
|
||||
MontFp!(
|
||||
"1028732146235106349975324479215795277384839936929757896155643118032610843298655225875571310552543014690878354869257")
|
||||
);
|
||||
|
||||
pub const DOUBLE_P_POWER_ENDOMORPHISM: Fq2 = Fq2::new(
|
||||
// PSI_2_X = (u+1)^((1-p^2)/3)
|
||||
const DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0: Fq2 = Fq2::new(
|
||||
MontFp!("4002409555221667392624310435006688643935503118305586438271171395842971157480381377015405980053539358417135540939436"),
|
||||
Fq::ZERO
|
||||
);
|
||||
|
||||
pub fn p_power_endomorphism(p: &Affine<Config>) -> Affine<Config> {
|
||||
/// psi(P) is the untwist-Frobenius-twist endomorhism on E'(Fq2)
|
||||
fn p_power_endomorphism(p: &Affine<Config>) -> Affine<Config> {
|
||||
// The p-power endomorphism for G2 is defined as follows:
|
||||
// 1. Note that G2 is defined on curve E': y^2 = x^3 + 4(u+1).
|
||||
// To map a point (x, y) in E' to (s, t) in E,
|
||||
// one set s = x / ((u+1) ^ (1/3)), t = y / ((u+1) ^ (1/2)),
|
||||
// set s = x / ((u+1) ^ (1/3)), t = y / ((u+1) ^ (1/2)),
|
||||
// because E: y^2 = x^3 + 4.
|
||||
// 2. Apply the Frobenius endomorphism (s, t) => (s', t'),
|
||||
// another point on curve E, where s' = s^p, t' = t^p.
|
||||
// 3. Map the point from E back to E'; that is,
|
||||
// one set x' = s' * ((u+1) ^ (1/3)), y' = t' * ((u+1) ^ (1/2)).
|
||||
// set x' = s' * ((u+1) ^ (1/3)), y' = t' * ((u+1) ^ (1/2)).
|
||||
//
|
||||
// To sum up, it maps
|
||||
// (x,y) -> (x^p / ((u+1)^((p-1)/3)), y^p / ((u+1)^((p-1)/2)))
|
||||
@@ -252,10 +251,10 @@ pub fn p_power_endomorphism(p: &Affine<Config>) -> Affine<Config> {
|
||||
}
|
||||
|
||||
/// For a p-power endomorphism psi(P), compute psi(psi(P))
|
||||
pub fn double_p_power_endomorphism(p: &Projective<Config>) -> Projective<Config> {
|
||||
fn double_p_power_endomorphism(p: &Projective<Config>) -> Projective<Config> {
|
||||
let mut res = *p;
|
||||
|
||||
res.x *= DOUBLE_P_POWER_ENDOMORPHISM;
|
||||
res.x *= DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0;
|
||||
res.y = res.y.neg();
|
||||
|
||||
res
|
||||
@@ -265,7 +264,31 @@ pub fn double_p_power_endomorphism(p: &Projective<Config>) -> Projective<Config>
|
||||
mod test {
|
||||
|
||||
use super::*;
|
||||
use ark_std::UniformRand;
|
||||
use ark_std::{rand::Rng, UniformRand};
|
||||
|
||||
fn sample_unchecked() -> Affine<g2::Config> {
|
||||
let mut rng = ark_std::test_rng();
|
||||
loop {
|
||||
let x1 = Fq::rand(&mut rng);
|
||||
let x2 = Fq::rand(&mut rng);
|
||||
let greatest = rng.gen();
|
||||
let x = Fq2::new(x1, x2);
|
||||
|
||||
if let Some(p) = Affine::get_point_from_x_unchecked(x, greatest) {
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_psi_2() {
|
||||
let p = sample_unchecked();
|
||||
let psi_p = p_power_endomorphism(&p);
|
||||
let psi2_p_composed = p_power_endomorphism(&psi_p);
|
||||
let psi2_p_optimised = double_p_power_endomorphism(&p.into());
|
||||
|
||||
assert_eq!(psi2_p_composed, psi2_p_optimised);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cofactor_clearing() {
|
||||
@@ -284,13 +307,14 @@ mod test {
|
||||
0xbc69f08f2ee75b3,
|
||||
];
|
||||
|
||||
let mut rng = ark_std::test_rng();
|
||||
const SAMPLES: usize = 10;
|
||||
for _ in 0..SAMPLES {
|
||||
let p = Affine::<g2::Config>::rand(&mut rng);
|
||||
let optimised = p.clear_cofactor().into_group();
|
||||
let p: Affine<g2::Config> = sample_unchecked();
|
||||
let optimised = p.clear_cofactor();
|
||||
let naive = g2::Config::mul_affine(&p, h_eff);
|
||||
assert_eq!(optimised, naive);
|
||||
assert_eq!(optimised.into_group(), naive);
|
||||
assert!(optimised.is_on_curve());
|
||||
assert!(optimised.is_in_correct_subgroup_assuming_on_curve());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user