Fast cofactor clearing for BLS12-377 (#141)

* add faster cofactor clearing and tests for g1

* add faster cofactor clearing and tests for g2

parameters of endomorphisms are wrong for now

* add h_eff to g2 tests for correctness


test

* improve cofactor tests g2

* add a test for psi(psi(P)) == psi2(P)

* fix bls12-377 psi & psi2 computation parameters

* rename const to DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0 and make private

* fix clippy warnings in changed code

* remove bls12-381-specific in line comment

* update code comments, make methods private

* master should be patched with master

* update changelog
This commit is contained in:
mmagician
2023-01-01 15:53:39 +01:00
committed by GitHub
parent cba0c7ef0d
commit 0d2142c001
5 changed files with 251 additions and 31 deletions

View File

@@ -1,12 +1,15 @@
use ark_ec::models::{
short_weierstrass::{Affine as SWAffine, SWCurveConfig},
twisted_edwards::{
Affine as TEAffine, MontCurveConfig, Projective as TEProjective, TECurveConfig,
use ark_ec::{
bls12::Bls12Config,
models::{
short_weierstrass::{Affine as SWAffine, SWCurveConfig},
twisted_edwards::{
Affine as TEAffine, MontCurveConfig, Projective as TEProjective, TECurveConfig,
},
},
CurveConfig,
};
use ark_ff::{Field, MontFp, Zero};
use core::ops::Neg;
use ark_ff::{Field, MontFp, PrimeField, Zero};
use ark_std::{ops::Neg, One};
use crate::{Fq, Fr};
@@ -39,6 +42,20 @@ impl SWCurveConfig for Config {
fn mul_by_a(_: Self::BaseField) -> Self::BaseField {
Self::BaseField::zero()
}
#[inline]
fn clear_cofactor(p: &G1SWAffine) -> G1SWAffine {
// Using the effective cofactor.
//
// It is enough to multiply by (x - 1), instead of (x - 1)^2 / 3
let h_eff = x_minus_one().into_bigint();
<Config as SWCurveConfig>::mul_affine(p, h_eff.as_ref()).into()
}
}
fn x_minus_one() -> Fr {
const X: Fr = Fr::from_sign_and_limbs(!crate::Config::X_IS_NEGATIVE, crate::Config::X);
X - Fr::one()
}
pub type G1SWAffine = SWAffine<Config>;
@@ -209,3 +226,34 @@ pub const TE_GENERATOR_X: Fq = MontFp!("7122256953170913722937026889632370569028
/// TE_GENERATOR_Y =
/// 6177051365529633638563236407038680211609544222665285371549726196884440490905471891908272386851767077598415378235
pub const TE_GENERATOR_Y: Fq = MontFp!("6177051365529633638563236407038680211609544222665285371549726196884440490905471891908272386851767077598415378235");
#[cfg(test)]
mod test {
use super::*;
use crate::g1;
use ark_std::{rand::Rng, UniformRand};
fn sample_unchecked() -> SWAffine<g1::Config> {
let mut rng = ark_std::test_rng();
loop {
let x = Fq::rand(&mut rng);
let greatest = rng.gen();
if let Some(p) = SWAffine::get_point_from_x_unchecked(x, greatest) {
return p;
}
}
}
#[test]
fn test_cofactor_clearing() {
const SAMPLES: usize = 100;
for _ in 0..SAMPLES {
let p: SWAffine<g1::Config> = sample_unchecked();
let p = <Config as SWCurveConfig>::clear_cofactor(&p);
assert!(p.is_on_curve());
assert!(p.is_in_correct_subgroup_assuming_on_curve());
}
}
}

View File

@@ -1,10 +1,13 @@
use ark_ec::{
bls12::Bls12Config,
models::{short_weierstrass::SWCurveConfig, CurveConfig},
short_weierstrass::Affine,
short_weierstrass::{Affine, Projective},
AffineRepr, CurveGroup, Group,
};
use ark_ff::{Field, MontFp, Zero};
use ark_std::ops::Neg;
use crate::{g1, Fq, Fq2, Fr};
use crate::*;
pub type G2Affine = Affine<Config>;
#[derive(Clone, Default, PartialEq, Eq)]
@@ -56,6 +59,36 @@ impl SWCurveConfig for Config {
fn mul_by_a(_: Self::BaseField) -> Self::BaseField {
Self::BaseField::zero()
}
#[inline]
fn clear_cofactor(p: &G2Affine) -> G2Affine {
// Based on Section 4.1 of https://eprint.iacr.org/2017/419.pdf
// [h(ψ)]P = [x^2 x 1]P + [x 1]ψ(P) + (ψ^2)(2P)
let x: &'static [u64] = crate::Config::X;
let p_projective = p.into_group();
// [x]P
let x_p = Config::mul_affine(p, x);
// ψ(P)
let psi_p = p_power_endomorphism(p);
// (ψ^2)(2P)
let mut psi2_p2 = double_p_power_endomorphism(&p_projective.double());
// tmp = [x]P + ψ(P)
let mut tmp = x_p;
tmp += &psi_p;
// tmp2 = [x^2]P + [x]ψ(P)
let mut tmp2: Projective<Config> = tmp;
tmp2 = tmp2.mul_bigint(x);
// add up all the terms
psi2_p2 += tmp2;
psi2_p2 -= x_p;
psi2_p2 += &-psi_p;
(psi2_p2 - p_projective).into_affine()
}
}
pub const G2_GENERATOR_X: Fq2 = Fq2::new(G2_GENERATOR_X_C0, G2_GENERATOR_X_C1);
@@ -76,3 +109,118 @@ pub const G2_GENERATOR_Y_C0: Fq = MontFp!("6316029476829207320938136194393519890
/// G2_GENERATOR_Y_C1 =
/// 149157405641012693445398062341192467754805999074082136895788947234480009303640899064710353187729182149407503257491
pub const G2_GENERATOR_Y_C1: Fq = MontFp!("149157405641012693445398062341192467754805999074082136895788947234480009303640899064710353187729182149407503257491");
// PSI_X = u^((p-1)/3)
const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = Fq2::new(
MontFp!(
"80949648264912719408558363140637477264845294720710499478137287262712535938301461879813459410946"
),
Fq::ZERO,
);
// PSI_Y = u^((p-1)/2)
const P_POWER_ENDOMORPHISM_COEFF_1: Fq2 = Fq2::new(
MontFp!(
"216465761340224619389371505802605247630151569547285782856803747159100223055385581585702401816380679166954762214499"),
Fq::ZERO,
);
// PSI_2_X = u^((p^2 - 1)/3)
const DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0: Fq2 = Fq2::new(
MontFp!("80949648264912719408558363140637477264845294720710499478137287262712535938301461879813459410945"),
Fq::ZERO
);
/// psi(x,y) is the untwist-Frobenius-twist endomorhism on E'(Fq2)
fn p_power_endomorphism(p: &Affine<Config>) -> Affine<Config> {
// The p-power endomorphism for G2 is defined as follows:
// 1. Note that G2 is defined on curve E': y^2 = x^3 + 1/u.
// To map a point (x, y) in E' to (s, t) in E,
// one set s = x * (u ^ (1/3)), t = y * (u ^ (1/2)),
// because E: y^2 = x^3 + 1.
// 2. Apply the Frobenius endomorphism (s, t) => (s', t'),
// another point on curve E, where s' = s^p, t' = t^p.
// 3. Map the point from E back to E'; that is,
// one set x' = s' / ((u) ^ (1/3)), y' = t' / ((u) ^ (1/2)).
//
// To sum up, it maps
// (x,y) -> (x^p * (u ^ ((p-1)/3)), y^p * (u ^ ((p-1)/2)))
// as implemented in the code as follows.
let mut res = *p;
res.x.frobenius_map_in_place(1);
res.y.frobenius_map_in_place(1);
res.x *= P_POWER_ENDOMORPHISM_COEFF_0;
res.y *= P_POWER_ENDOMORPHISM_COEFF_1;
res
}
/// For a p-power endomorphism psi(P), compute psi(psi(P))
fn double_p_power_endomorphism(p: &Projective<Config>) -> Projective<Config> {
// p_power_endomorphism(&p_power_endomorphism(&p.into_affine())).into()
let mut res = *p;
res.x *= DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0;
// u^((p^2 - 1)/2) == -1
res.y = res.y.neg();
res
}
#[cfg(test)]
mod test {
use super::*;
use ark_std::{rand::Rng, UniformRand};
fn sample_unchecked() -> Affine<g2::Config> {
let mut rng = ark_std::test_rng();
loop {
let x1 = Fq::rand(&mut rng);
let x2 = Fq::rand(&mut rng);
let greatest = rng.gen();
let x = Fq2::new(x1, x2);
if let Some(p) = Affine::get_point_from_x_unchecked(x, greatest) {
return p;
}
}
}
#[test]
fn test_psi_2() {
let p = sample_unchecked();
let psi_p = p_power_endomorphism(&p);
let psi2_p_composed = p_power_endomorphism(&psi_p);
let psi2_p_optimised = double_p_power_endomorphism(&p.into());
assert_eq!(psi2_p_composed, psi2_p_optimised);
}
#[test]
fn test_cofactor_clearing() {
let h_eff = &[
0x1e34800000000000,
0xcf664765b0000003,
0x8e8e73ad8a538800,
0x78ba279637388559,
0xb85860aaaad29276,
0xf7ee7c4b03103b45,
0x8f6ade35a5c7d769,
0xa951764c46f4edd2,
0x53648d3d9502abfb,
0x1f60243677e306,
];
const SAMPLES: usize = 10;
for _ in 0..SAMPLES {
let p: Affine<g2::Config> = sample_unchecked();
let optimised = p.clear_cofactor();
let naive = g2::Config::mul_affine(&p, h_eff);
assert_eq!(optimised.into_group(), naive);
assert!(optimised.is_on_curve());
assert!(optimised.is_in_correct_subgroup_assuming_on_curve());
}
}
}