mirror of
https://github.com/arnaucube/ark-curves-cherry-picked.git
synced 2026-01-09 23:41:30 +01:00
Fast cofactor clearing for BLS12-377 (#141)
* add faster cofactor clearing and tests for g1 * add faster cofactor clearing and tests for g2 parameters of endomorphisms are wrong for now * add h_eff to g2 tests for correctness test * improve cofactor tests g2 * add a test for psi(psi(P)) == psi2(P) * fix bls12-377 psi & psi2 computation parameters * rename const to DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0 and make private * fix clippy warnings in changed code * remove bls12-381-specific in line comment * update code comments, make methods private * master should be patched with master * update changelog
This commit is contained in:
@@ -200,11 +200,8 @@ pub const G2_GENERATOR_Y_C0: Fq = MontFp!("1985150602287291935568054521177171638
|
||||
/// 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582
|
||||
pub const G2_GENERATOR_Y_C1: Fq = MontFp!("927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582");
|
||||
|
||||
// psi(x,y) = (x**p * PSI_X, y**p * PSI_Y) is the Frobenius composed
|
||||
// with the quadratic twist and its inverse
|
||||
|
||||
// PSI_X = 1/(u+1)^((p-1)/3)
|
||||
pub const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = Fq2::new(
|
||||
const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = Fq2::new(
|
||||
Fq::ZERO,
|
||||
MontFp!(
|
||||
"4002409555221667392624310435006688643935503118305586438271171395842971157480381377015405980053539358417135540939437"
|
||||
@@ -212,28 +209,30 @@ pub const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = Fq2::new(
|
||||
);
|
||||
|
||||
// PSI_Y = 1/(u+1)^((p-1)/2)
|
||||
pub const P_POWER_ENDOMORPHISM_COEFF_1: Fq2 = Fq2::new(
|
||||
const P_POWER_ENDOMORPHISM_COEFF_1: Fq2 = Fq2::new(
|
||||
MontFp!(
|
||||
"2973677408986561043442465346520108879172042883009249989176415018091420807192182638567116318576472649347015917690530"),
|
||||
MontFp!(
|
||||
"1028732146235106349975324479215795277384839936929757896155643118032610843298655225875571310552543014690878354869257")
|
||||
);
|
||||
|
||||
pub const DOUBLE_P_POWER_ENDOMORPHISM: Fq2 = Fq2::new(
|
||||
// PSI_2_X = (u+1)^((1-p^2)/3)
|
||||
const DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0: Fq2 = Fq2::new(
|
||||
MontFp!("4002409555221667392624310435006688643935503118305586438271171395842971157480381377015405980053539358417135540939436"),
|
||||
Fq::ZERO
|
||||
);
|
||||
|
||||
pub fn p_power_endomorphism(p: &Affine<Config>) -> Affine<Config> {
|
||||
/// psi(P) is the untwist-Frobenius-twist endomorhism on E'(Fq2)
|
||||
fn p_power_endomorphism(p: &Affine<Config>) -> Affine<Config> {
|
||||
// The p-power endomorphism for G2 is defined as follows:
|
||||
// 1. Note that G2 is defined on curve E': y^2 = x^3 + 4(u+1).
|
||||
// To map a point (x, y) in E' to (s, t) in E,
|
||||
// one set s = x / ((u+1) ^ (1/3)), t = y / ((u+1) ^ (1/2)),
|
||||
// set s = x / ((u+1) ^ (1/3)), t = y / ((u+1) ^ (1/2)),
|
||||
// because E: y^2 = x^3 + 4.
|
||||
// 2. Apply the Frobenius endomorphism (s, t) => (s', t'),
|
||||
// another point on curve E, where s' = s^p, t' = t^p.
|
||||
// 3. Map the point from E back to E'; that is,
|
||||
// one set x' = s' * ((u+1) ^ (1/3)), y' = t' * ((u+1) ^ (1/2)).
|
||||
// set x' = s' * ((u+1) ^ (1/3)), y' = t' * ((u+1) ^ (1/2)).
|
||||
//
|
||||
// To sum up, it maps
|
||||
// (x,y) -> (x^p / ((u+1)^((p-1)/3)), y^p / ((u+1)^((p-1)/2)))
|
||||
@@ -252,10 +251,10 @@ pub fn p_power_endomorphism(p: &Affine<Config>) -> Affine<Config> {
|
||||
}
|
||||
|
||||
/// For a p-power endomorphism psi(P), compute psi(psi(P))
|
||||
pub fn double_p_power_endomorphism(p: &Projective<Config>) -> Projective<Config> {
|
||||
fn double_p_power_endomorphism(p: &Projective<Config>) -> Projective<Config> {
|
||||
let mut res = *p;
|
||||
|
||||
res.x *= DOUBLE_P_POWER_ENDOMORPHISM;
|
||||
res.x *= DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0;
|
||||
res.y = res.y.neg();
|
||||
|
||||
res
|
||||
@@ -265,7 +264,31 @@ pub fn double_p_power_endomorphism(p: &Projective<Config>) -> Projective<Config>
|
||||
mod test {
|
||||
|
||||
use super::*;
|
||||
use ark_std::UniformRand;
|
||||
use ark_std::{rand::Rng, UniformRand};
|
||||
|
||||
fn sample_unchecked() -> Affine<g2::Config> {
|
||||
let mut rng = ark_std::test_rng();
|
||||
loop {
|
||||
let x1 = Fq::rand(&mut rng);
|
||||
let x2 = Fq::rand(&mut rng);
|
||||
let greatest = rng.gen();
|
||||
let x = Fq2::new(x1, x2);
|
||||
|
||||
if let Some(p) = Affine::get_point_from_x_unchecked(x, greatest) {
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_psi_2() {
|
||||
let p = sample_unchecked();
|
||||
let psi_p = p_power_endomorphism(&p);
|
||||
let psi2_p_composed = p_power_endomorphism(&psi_p);
|
||||
let psi2_p_optimised = double_p_power_endomorphism(&p.into());
|
||||
|
||||
assert_eq!(psi2_p_composed, psi2_p_optimised);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cofactor_clearing() {
|
||||
@@ -284,13 +307,14 @@ mod test {
|
||||
0xbc69f08f2ee75b3,
|
||||
];
|
||||
|
||||
let mut rng = ark_std::test_rng();
|
||||
const SAMPLES: usize = 10;
|
||||
for _ in 0..SAMPLES {
|
||||
let p = Affine::<g2::Config>::rand(&mut rng);
|
||||
let optimised = p.clear_cofactor().into_group();
|
||||
let p: Affine<g2::Config> = sample_unchecked();
|
||||
let optimised = p.clear_cofactor();
|
||||
let naive = g2::Config::mul_affine(&p, h_eff);
|
||||
assert_eq!(optimised, naive);
|
||||
assert_eq!(optimised.into_group(), naive);
|
||||
assert!(optimised.is_on_curve());
|
||||
assert!(optimised.is_in_correct_subgroup_assuming_on_curve());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user