Browse Source

Add Pallas and Vesta curves (#21)

Co-authored-by: Ying Tong Lai <yingtong@electriccoin.co>
Co-authored-by: Daira Hopwood <daira@jacaranda.org>
Co-authored-by: Pratyush Mishra <pratyushmishra@berkeley.edu>
Co-authored-by: therealyingtong <yingtong@z.cash>
fq2_neg_nonresidue
Daira Hopwood 4 years ago
committed by GitHub
parent
commit
39c58df3a6
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
25 changed files with 840 additions and 10 deletions
  1. +3
    -0
      Cargo.toml
  2. +4
    -0
      README.md
  3. +4
    -10
      curve-tests/src/fields.rs
  4. +36
    -0
      pallas/Cargo.toml
  5. +12
    -0
      pallas/src/constraints/curves.rs
  6. +10
    -0
      pallas/src/constraints/fields.rs
  7. +107
    -0
      pallas/src/constraints/mod.rs
  8. +49
    -0
      pallas/src/curves/mod.rs
  9. +39
    -0
      pallas/src/curves/tests.rs
  10. +90
    -0
      pallas/src/fields/fq.rs
  11. +91
    -0
      pallas/src/fields/fr.rs
  12. +12
    -0
      pallas/src/fields/mod.rs
  13. +26
    -0
      pallas/src/fields/tests.rs
  14. +36
    -0
      pallas/src/lib.rs
  15. +33
    -0
      vesta/Cargo.toml
  16. +12
    -0
      vesta/src/constraints/curves.rs
  17. +10
    -0
      vesta/src/constraints/fields.rs
  18. +107
    -0
      vesta/src/constraints/mod.rs
  19. +51
    -0
      vesta/src/curves/mod.rs
  20. +39
    -0
      vesta/src/curves/tests.rs
  21. +1
    -0
      vesta/src/fields/fq.rs
  22. +1
    -0
      vesta/src/fields/fr.rs
  23. +8
    -0
      vesta/src/fields/mod.rs
  24. +26
    -0
      vesta/src/fields/tests.rs
  25. +33
    -0
      vesta/src/lib.rs

+ 3
- 0
Cargo.toml

@ -27,6 +27,9 @@ members = [
"mnt4_753", "mnt4_753",
"mnt6_753", "mnt6_753",
"ed_on_mnt4_298", "ed_on_mnt4_298",
"pallas",
"vesta",
] ]
[profile.release] [profile.release]

+ 4
- 0
README.md

@ -29,3 +29,7 @@ This repository contains implementations of some popular elliptic curves. The cu
* [`ark-mnt4-753`](mnt4_753): Implements the MNT4-753 pairing-friendly curve. This curve forms a pairing-friendly cycle with MNT6-753 * [`ark-mnt4-753`](mnt4_753): Implements the MNT4-753 pairing-friendly curve. This curve forms a pairing-friendly cycle with MNT6-753
* [`ark-mnt6-753`](mnt6_753): Implements the MNT6-753 pairing-friendly curve. This curve forms a pairing-friendly cycle with MNT4-753 * [`ark-mnt6-753`](mnt6_753): Implements the MNT6-753 pairing-friendly curve. This curve forms a pairing-friendly cycle with MNT4-753
* [`ark-ed-on-mnt4-753`](ed_on_mnt4_753): Implements a Twisted Edwards curve atop the scalar field of MNT4-753 * [`ark-ed-on-mnt4-753`](ed_on_mnt4_753): Implements a Twisted Edwards curve atop the scalar field of MNT4-753
### [Pasta](https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/) cycle of curves
* [`ark-pallas`](pallas): Implements Pallas, a prime-order curve that forms an amicable pair with Vesta
* [`ark-vesta`](vesta): Implements Vesta, a prime-order curve that forms an amicable pair with Pallas

+ 4
- 10
curve-tests/src/fields.rs

@ -417,20 +417,14 @@ pub fn field_serialization_test(buf_size: usize) {
#[derive(Default, Clone, Copy, Debug)] #[derive(Default, Clone, Copy, Debug)]
struct DummyFlags; struct DummyFlags;
impl Flags for DummyFlags { impl Flags for DummyFlags {
const BIT_SIZE: usize = 200;
fn u8_bitmask(&self) -> u8 { fn u8_bitmask(&self) -> u8 {
0 0
} }
fn from_u8(_value: u8) -> Self {
DummyFlags
}
fn from_u8_remove_flags(_value: &mut u8) -> Self {
DummyFlags
}
fn len() -> usize {
200
fn from_u8(_value: u8) -> Option<Self> {
Some(DummyFlags)
} }
} }

+ 36
- 0
pallas/Cargo.toml

@ -0,0 +1,36 @@
[package]
name = "ark-pallas"
version = "0.1.0"
authors = [ "Ying Tong Lai", "Daira Hopwood", "O(1) Labs", "arkworks contributors" ]
description = "The Pallas prime-order elliptic curve"
homepage = "https://arkworks.rs"
repository = "https://github.com/arkworks-rs/curves"
documentation = "https://docs.rs/ark-pallas/"
keywords = ["cryptography", "finite fields", "elliptic curves" ]
categories = ["cryptography"]
include = ["Cargo.toml", "src"]
license = "MIT/Apache-2.0"
edition = "2018"
[dependencies]
ark-ff = { git = "https://github.com/arkworks-rs/algebra", default-features = false }
ark-ec = { git = "https://github.com/arkworks-rs/algebra", default-features = false }
ark-r1cs-std = { git = "https://github.com/arkworks-rs/r1cs-std", default-features = false, optional = true }
ark-std = { git = "https://github.com/arkworks-rs/utils", default-features = false }
[dev-dependencies]
ark-relations = { git = "https://github.com/arkworks-rs/snark", default-features = false }
ark-serialize = { git = "https://github.com/arkworks-rs/algebra", default-features = false }
ark-curve-tests = { path = "../curve-tests", default-features = false }
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
rand = { version = "0.7", default-features = false }
rand_xorshift = "0.2"
[features]
default = [ "curve" ]
std = [ "ark-std/std", "ark-ff/std", "ark-ec/std" ]
curve = [ "scalar_field", "base_field" ]
scalar_field = []
base_field = []
r1cs = [ "base_field", "ark-r1cs-std" ]

+ 12
- 0
pallas/src/constraints/curves.rs

@ -0,0 +1,12 @@
use crate::*;
use ark_r1cs_std::groups::curves::short_weierstrass::ProjectiveVar;
use crate::constraints::FBaseVar;
/// A group element in the Pallas prime-order group.
pub type GVar = ProjectiveVar<PallasParameters, FBaseVar>;
#[test]
fn test() {
ark_curve_constraint_tests::curves::sw_test::<PallasParameters, GVar>().unwrap();
}

+ 10
- 0
pallas/src/constraints/fields.rs

@ -0,0 +1,10 @@
use crate::fq::Fq;
use ark_r1cs_std::fields::fp::FpVar;
/// A variable that is the R1CS equivalent of `crate::Fq`.
pub type FBaseVar = FpVar<Fq>;
#[test]
fn test() {
ark_curve_constraint_tests::fields::field_test::<_, _, FBaseVar>().unwrap();
}

+ 107
- 0
pallas/src/constraints/mod.rs

@ -0,0 +1,107 @@
//! This module implements the R1CS equivalent of `ark_pallas`.
//!
//! It implements field variables for `crate::Fq`,
//! and group variables for `crate::GroupProjective`.
//!
//! The field underlying these constraints is `crate::Fq`.
//!
//! # Examples
//!
//! One can perform standard algebraic operations on `FBaseVar`:
//!
//! ```
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
//! use ark_std::UniformRand;
//! use ark_relations::r1cs::*;
//! use ark_r1cs_std::prelude::*;
//! use ark_pallas::{*, constraints::*};
//!
//! let cs = ConstraintSystem::<Fq>::new_ref();
//! // This rng is just for test purposes; do not use it
//! // in real applications.
//! let mut rng = ark_std::test_rng();
//!
//! // Generate some random `Fq` elements.
//! let a_native = Fq::rand(&mut rng);
//! let b_native = Fq::rand(&mut rng);
//!
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
//! let a = FBaseVar::new_witness(ark_relations::ns!(cs, "generate_a"), || Ok(a_native))?;
//! let b = FBaseVar::new_witness(ark_relations::ns!(cs, "generate_b"), || Ok(b_native))?;
//!
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
//! // constraints or variables.
//! let a_const = FBaseVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
//! let b_const = FBaseVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
//!
//! let one = FBaseVar::one();
//! let zero = FBaseVar::zero();
//!
//! // Sanity check one + one = two
//! let two = &one + &one + &zero;
//! two.enforce_equal(&one.double()?)?;
//!
//! assert!(cs.is_satisfied()?);
//!
//! // Check that the value of &a + &b is correct.
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
//!
//! // Check that the value of &a * &b is correct.
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
//!
//! // Check that operations on variables and constants are equivalent.
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
//! assert!(cs.is_satisfied()?);
//! # Ok(())
//! # }
//! ```
//!
//! One can also perform standard algebraic operations on `GVar`:
//!
//! ```
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
//! # use ark_std::UniformRand;
//! # use ark_relations::r1cs::*;
//! # use ark_r1cs_std::prelude::*;
//! # use ark_pallas::{*, constraints::*};
//!
//! # let cs = ConstraintSystem::<Fq>::new_ref();
//! # let mut rng = ark_std::test_rng();
//!
//! // Generate some random `Projective` elements.
//! let a_native = Projective::rand(&mut rng);
//! let b_native = Projective::rand(&mut rng);
//!
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
//! let a = GVar::new_witness(ark_relations::ns!(cs, "a"), || Ok(a_native))?;
//! let b = GVar::new_witness(ark_relations::ns!(cs, "b"), || Ok(b_native))?;
//!
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
//! // constraints or variables.
//! let a_const = GVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
//! let b_const = GVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
//!
//! // This returns the identity.
//! let zero = GVar::zero();
//!
//! // Sanity check one + one = two
//! let two_a = &a + &a + &zero;
//! two_a.enforce_equal(&a.double()?)?;
//!
//! assert!(cs.is_satisfied()?);
//!
//! // Check that the value of &a + &b is correct.
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
//!
//! // Check that operations on variables and constants are equivalent.
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
//! assert!(cs.is_satisfied()?);
//! # Ok(())
//! # }
//! ```
mod curves;
mod fields;
pub use curves::*;
pub use fields::*;

+ 49
- 0
pallas/src/curves/mod.rs

@ -0,0 +1,49 @@
use crate::{fq::Fq, fr::Fr};
use ark_ec::{
models::{ModelParameters, SWModelParameters},
short_weierstrass_jacobian::{GroupAffine, GroupProjective},
};
use ark_ff::{field_new, Zero};
#[cfg(test)]
mod tests;
#[derive(Copy, Clone, Default, PartialEq, Eq)]
pub struct PallasParameters;
impl ModelParameters for PallasParameters {
type BaseField = Fq;
type ScalarField = Fr;
}
pub type Affine = GroupAffine<PallasParameters>;
pub type Projective = GroupProjective<PallasParameters>;
impl SWModelParameters for PallasParameters {
/// COEFF_A = 0
const COEFF_A: Fq = field_new!(Fq, "0");
/// COEFF_B = 5
const COEFF_B: Fq = field_new!(Fq, "5");
/// COFACTOR = 1
const COFACTOR: &'static [u64] = &[0x1];
/// COFACTOR_INV = 1
const COFACTOR_INV: Fr = field_new!(Fr, "1");
/// AFFINE_GENERATOR_COEFFS = (G1_GENERATOR_X, G1_GENERATOR_Y)
const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField) =
(G_GENERATOR_X, G_GENERATOR_Y);
#[inline(always)]
fn mul_by_a(_: &Self::BaseField) -> Self::BaseField {
Self::BaseField::zero()
}
}
/// G_GENERATOR_X = -1
pub const G_GENERATOR_X: Fq = field_new!(Fq, "-1");
/// G_GENERATOR_Y = 2
pub const G_GENERATOR_Y: Fq = field_new!(Fq, "2");

+ 39
- 0
pallas/src/curves/tests.rs

@ -0,0 +1,39 @@
#![allow(unused_imports)]
use ark_ff::{
fields::{Field, FpParameters, PrimeField, SquareRootField},
One, Zero,
};
use ark_serialize::CanonicalSerialize;
use ark_std::test_rng;
use ark_ec::{models::SWModelParameters, AffineCurve, PairingEngine, ProjectiveCurve};
use core::ops::{AddAssign, MulAssign};
use rand::Rng;
use crate::{Affine, PallasParameters, Projective};
use ark_curve_tests::{
curves::{curve_tests, sw_tests},
groups::group_test,
};
#[test]
fn test_projective_curve() {
curve_tests::<Projective>();
sw_tests::<PallasParameters>();
}
#[test]
fn test_projective_group() {
let mut rng = test_rng();
let a: Projective = rng.gen();
let b: Projective = rng.gen();
group_test(a, b);
}
#[test]
fn test_generator() {
let generator = Affine::prime_subgroup_generator();
assert!(generator.is_on_curve());
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
}

+ 90
- 0
pallas/src/fields/fq.rs

@ -0,0 +1,90 @@
use ark_ff::{
biginteger::BigInteger256 as BigInteger,
fields::{FftParameters, Fp256, Fp256Parameters},
};
pub type Fq = Fp256<FqParameters>;
pub struct FqParameters;
impl Fp256Parameters for FqParameters {}
impl FftParameters for FqParameters {
type BigInt = BigInteger;
const TWO_ADICITY: u32 = 32;
// TWO_ADIC_ROOT_OF_UNITY = GENERATOR^T
// Encoded in Montgomery form, so the value here is (5^T)R mod p.
const TWO_ADIC_ROOT_OF_UNITY: BigInteger = BigInteger([
0xa28db849bad6dbf0,
0x9083cd03d3b539df,
0xfba6b9ca9dc8448e,
0x3ec928747b89c6da,
]);
}
impl ark_ff::fields::FpParameters for FqParameters {
// 28948022309329048855892746252171976963363056481941560715954676764349967630337
const MODULUS: BigInteger = BigInteger([
0x992d30ed00000001,
0x224698fc094cf91b,
0x0000000000000000,
0x4000000000000000,
]);
// R = 2^256 mod p
const R: BigInteger = BigInteger([
0x34786d38fffffffd,
0x992c350be41914ad,
0xffffffffffffffff,
0x3fffffffffffffff,
]);
// R2 = (2^256)^2 mod p
const R2: BigInteger = BigInteger([
0x8c78ecb30000000f,
0xd7d30dbd8b0de0e7,
0x7797a99bc3c95d18,
0x096d41af7b9cb714,
]);
const MODULUS_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
0xcc96987680000000,
0x11234c7e04a67c8d,
0x0000000000000000,
0x2000000000000000,
]);
// T and T_MINUS_ONE_DIV_TWO, where MODULUS - 1 = 2^S * T
const T: BigInteger = BigInteger([
0x094cf91b992d30ed,
0x00000000224698fc,
0x0000000000000000,
0x0000000040000000,
]);
const T_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
0x04a67c8dcc969876,
0x0000000011234c7e,
0x0000000000000000,
0x0000000020000000,
]);
// GENERATOR = 5
// Encoded in Montgomery form, so the value here is 5R mod p.
const GENERATOR: BigInteger = BigInteger([
0xa1a55e68ffffffed,
0x74c2a54b4f4982f3,
0xfffffffffffffffd,
0x3fffffffffffffff,
]);
const MODULUS_BITS: u32 = 255;
const CAPACITY: u32 = Self::MODULUS_BITS - 1;
const REPR_SHAVE_BITS: u32 = 1;
// INV = -p^{-1} (mod 2^64)
const INV: u64 = 11037532056220336127;
}

+ 91
- 0
pallas/src/fields/fr.rs

@ -0,0 +1,91 @@
use ark_ff::{
biginteger::BigInteger256 as BigInteger,
fields::{FftParameters, Fp256, Fp256Parameters, FpParameters},
};
pub struct FrParameters;
pub type Fr = Fp256<FrParameters>;
impl Fp256Parameters for FrParameters {}
impl FftParameters for FrParameters {
type BigInt = BigInteger;
const TWO_ADICITY: u32 = 32;
// TWO_ADIC_ROOT_OF_UNITY = GENERATOR^T
// Encoded in Montgomery form, so the value here is (5^T)R mod q.
const TWO_ADIC_ROOT_OF_UNITY: BigInteger = BigInteger([
0x218077428c9942de,
0xcc49578921b60494,
0xac2e5d27b2efbee2,
0x0b79fa897f2db056,
]);
}
impl FpParameters for FrParameters {
// 28948022309329048855892746252171976963363056481941647379679742748393362948097
const MODULUS: BigInteger = BigInteger([
0x8c46eb2100000001,
0x224698fc0994a8dd,
0x0000000000000000,
0x4000000000000000,
]);
// R = 2^256 mod q
const R: BigInteger = BigInteger([
0x5b2b3e9cfffffffd,
0x992c350be3420567,
0xffffffffffffffff,
0x3fffffffffffffff,
]);
// R2 = (2^256)^2 mod q
const R2: BigInteger = BigInteger([
0xfc9678ff0000000f,
0x67bb433d891a16e3,
0x7fae231004ccf590,
0x096d41af7ccfdaa9,
]);
const MODULUS_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
0xc623759080000000,
0x11234c7e04ca546e,
0x0000000000000000,
0x2000000000000000,
]);
// T and T_MINUS_ONE_DIV_TWO, where MODULUS - 1 = 2^S * T
const T: BigInteger = BigInteger([
0x0994a8dd8c46eb21,
0x00000000224698fc,
0x0000000000000000,
0x0000000040000000,
]);
const T_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
0x04ca546ec6237590,
0x0000000011234c7e,
0x0000000000000000,
0x0000000020000000,
]);
// GENERATOR = 5
// Encoded in Montgomery form, so the value here is 5R mod q.
const GENERATOR: BigInteger = BigInteger([
0x96bc8c8cffffffed,
0x74c2a54b49f7778e,
0xfffffffffffffffd,
0x3fffffffffffffff,
]);
const MODULUS_BITS: u32 = 255;
const CAPACITY: u32 = Self::MODULUS_BITS - 1;
const REPR_SHAVE_BITS: u32 = 1;
// INV = -q^{-1} (mod 2^64)
const INV: u64 = 10108024940646105087;
}

+ 12
- 0
pallas/src/fields/mod.rs

@ -0,0 +1,12 @@
#[cfg(feature = "base_field")]
pub mod fq;
#[cfg(feature = "base_field")]
pub use self::fq::*;
#[cfg(feature = "scalar_field")]
pub mod fr;
#[cfg(feature = "scalar_field")]
pub use self::fr::*;
#[cfg(all(feature = "curve", test))]
mod tests;

+ 26
- 0
pallas/src/fields/tests.rs

@ -0,0 +1,26 @@
use ark_std::test_rng;
use rand::Rng;
use crate::*;
use ark_curve_tests::fields::*;
#[test]
fn test_fr() {
let mut rng = test_rng();
let a: Fr = rng.gen();
let b: Fr = rng.gen();
field_test(a, b);
sqrt_field_test(a);
primefield_test::<Fr>();
}
#[test]
fn test_fq() {
let mut rng = test_rng();
let a: Fq = rng.gen();
let b: Fq = rng.gen();
field_test(a, b);
sqrt_field_test(a);
primefield_test::<Fq>();
}

+ 36
- 0
pallas/src/lib.rs

@ -0,0 +1,36 @@
#![cfg_attr(not(feature = "std"), no_std)]
#![deny(
warnings,
unused,
future_incompatible,
nonstandard_style,
rust_2018_idioms
)]
#![forbid(unsafe_code)]
//! This library implements the prime-order curve Pallas, generated by
//! [Daira Hopwood](https://github.com/zcash/pasta). The main feature of this
//! curve is that it forms a cycle with Vesta, i.e. its scalar field and base
//! field respectively are the base field and scalar field of Vesta.
//!
//!
//! Curve information:
//! * Base field: q =
//! 28948022309329048855892746252171976963363056481941560715954676764349967630337
//! * Scalar field: r =
//! 28948022309329048855892746252171976963363056481941647379679742748393362948097
//! * Curve equation: y^2 = x^3 + 5
//! * Valuation(q - 1, 2) = 32
//! * Valuation(r - 1, 2) = 32
#[cfg(feature = "r1cs")]
pub mod constraints;
#[cfg(feature = "curve")]
mod curves;
#[cfg(any(feature = "scalar_field", feature = "base_field"))]
mod fields;
#[cfg(feature = "curve")]
pub use curves::*;
#[cfg(any(feature = "scalar_field", feature = "base_field"))]
pub use fields::*;

+ 33
- 0
vesta/Cargo.toml

@ -0,0 +1,33 @@
[package]
name = "ark-vesta"
version = "0.1.0"
authors = [ "Ying Tong Lai", "Daira Hopwood", "O(1) Labs", "arkworks contributors" ]
description = "The Vesta prime-order elliptic curve"
homepage = "https://arkworks.rs"
repository = "https://github.com/arkworks-rs/curves"
documentation = "https://docs.rs/ark-vesta/"
keywords = ["cryptography", "finite fields", "elliptic curves" ]
categories = ["cryptography"]
include = ["Cargo.toml", "src"]
license = "MIT/Apache-2.0"
edition = "2018"
[dependencies]
ark-ff = { git = "https://github.com/arkworks-rs/algebra", default-features = false }
ark-ec = { git = "https://github.com/arkworks-rs/algebra", default-features = false }
ark-r1cs-std = { git = "https://github.com/arkworks-rs/r1cs-std", default-features = false, optional = true }
ark-std = { git = "https://github.com/arkworks-rs/utils", default-features = false }
ark-pallas = { path = "../pallas", default-features = false, features = [ "scalar_field", "base_field" ] }
[dev-dependencies]
ark-relations = { git = "https://github.com/arkworks-rs/snark", default-features = false }
ark-serialize = { git = "https://github.com/arkworks-rs/algebra", default-features = false }
ark-curve-tests = { path = "../curve-tests", default-features = false }
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false }
rand = { version = "0.7", default-features = false }
rand_xorshift = "0.2"
[features]
default = []
std = [ "ark-std/std", "ark-ff/std", "ark-ec/std" ]
r1cs = [ "ark-r1cs-std" ]

+ 12
- 0
vesta/src/constraints/curves.rs

@ -0,0 +1,12 @@
use crate::*;
use ark_r1cs_std::groups::curves::short_weierstrass::ProjectiveVar;
use crate::constraints::FBaseVar;
/// A group element in the Vesta prime-order group.
pub type GVar = ProjectiveVar<VestaParameters, FBaseVar>;
#[test]
fn test() {
ark_curve_constraint_tests::curves::sw_test::<VestaParameters, GVar>().unwrap();
}

+ 10
- 0
vesta/src/constraints/fields.rs

@ -0,0 +1,10 @@
use crate::fq::Fq;
use ark_r1cs_std::fields::fp::FpVar;
/// A variable that is the R1CS equivalent of `crate::Fq`.
pub type FBaseVar = FpVar<Fq>;
#[test]
fn test() {
ark_curve_constraint_tests::fields::field_test::<_, _, FBaseVar>().unwrap();
}

+ 107
- 0
vesta/src/constraints/mod.rs

@ -0,0 +1,107 @@
//! This module implements the R1CS equivalent of `ark_vesta`.
//!
//! It implements field variables for `crate::Fq`,
//! and group variables for `crate::GroupProjective`.
//!
//! The field underlying these constraints is `crate::Fq`.
//!
//! # Examples
//!
//! One can perform standard algebraic operations on `FBaseVar`:
//!
//! ```
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
//! use ark_std::UniformRand;
//! use ark_relations::r1cs::*;
//! use ark_r1cs_std::prelude::*;
//! use ark_vesta::{*, constraints::*};
//!
//! let cs = ConstraintSystem::<Fq>::new_ref();
//! // This rng is just for test purposes; do not use it
//! // in real applications.
//! let mut rng = ark_std::test_rng();
//!
//! // Generate some random `Fq` elements.
//! let a_native = Fq::rand(&mut rng);
//! let b_native = Fq::rand(&mut rng);
//!
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
//! let a = FBaseVar::new_witness(ark_relations::ns!(cs, "generate_a"), || Ok(a_native))?;
//! let b = FBaseVar::new_witness(ark_relations::ns!(cs, "generate_b"), || Ok(b_native))?;
//!
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
//! // constraints or variables.
//! let a_const = FBaseVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
//! let b_const = FBaseVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
//!
//! let one = FBaseVar::one();
//! let zero = FBaseVar::zero();
//!
//! // Sanity check one + one = two
//! let two = &one + &one + &zero;
//! two.enforce_equal(&one.double()?)?;
//!
//! assert!(cs.is_satisfied()?);
//!
//! // Check that the value of &a + &b is correct.
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
//!
//! // Check that the value of &a * &b is correct.
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
//!
//! // Check that operations on variables and constants are equivalent.
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
//! assert!(cs.is_satisfied()?);
//! # Ok(())
//! # }
//! ```
//!
//! One can also perform standard algebraic operations on `GVar`:
//!
//! ```
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
//! # use ark_std::UniformRand;
//! # use ark_relations::r1cs::*;
//! # use ark_r1cs_std::prelude::*;
//! # use ark_vesta::{*, constraints::*};
//!
//! # let cs = ConstraintSystem::<Fq>::new_ref();
//! # let mut rng = ark_std::test_rng();
//!
//! // Generate some random `Projective` elements.
//! let a_native = Projective::rand(&mut rng);
//! let b_native = Projective::rand(&mut rng);
//!
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
//! let a = GVar::new_witness(ark_relations::ns!(cs, "a"), || Ok(a_native))?;
//! let b = GVar::new_witness(ark_relations::ns!(cs, "b"), || Ok(b_native))?;
//!
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
//! // constraints or variables.
//! let a_const = GVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
//! let b_const = GVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
//!
//! // This returns the identity.
//! let zero = GVar::zero();
//!
//! // Sanity check one + one = two
//! let two_a = &a + &a + &zero;
//! two_a.enforce_equal(&a.double()?)?;
//!
//! assert!(cs.is_satisfied()?);
//!
//! // Check that the value of &a + &b is correct.
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
//!
//! // Check that operations on variables and constants are equivalent.
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
//! assert!(cs.is_satisfied()?);
//! # Ok(())
//! # }
//! ```
mod curves;
mod fields;
pub use curves::*;
pub use fields::*;

+ 51
- 0
vesta/src/curves/mod.rs

@ -0,0 +1,51 @@
use crate::{fq::Fq, fr::Fr};
use ark_ec::{
models::{ModelParameters, SWModelParameters},
short_weierstrass_jacobian::{GroupAffine, GroupProjective},
};
use ark_ff::{field_new, Zero};
#[cfg(test)]
mod tests;
#[derive(Copy, Clone, Default, PartialEq, Eq)]
pub struct VestaParameters;
impl ModelParameters for VestaParameters {
type BaseField = Fq;
type ScalarField = Fr;
}
pub type Affine = GroupAffine<VestaParameters>;
pub type Projective = GroupProjective<VestaParameters>;
impl SWModelParameters for VestaParameters {
/// COEFF_A = 0
const COEFF_A: Fq = field_new!(Fq, "0");
/// COEFF_B = 5
const COEFF_B: Fq = field_new!(Fq, "5");
/// COFACTOR = 1
const COFACTOR: &'static [u64] = &[0x1];
/// COFACTOR_INV = 1
const COFACTOR_INV: Fr = field_new!(Fr, "1");
/// AFFINE_GENERATOR_COEFFS = (G1_GENERATOR_X, G1_GENERATOR_Y)
const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField) =
(G_GENERATOR_X, G_GENERATOR_Y);
#[inline(always)]
fn mul_by_a(_: &Self::BaseField) -> Self::BaseField {
Self::BaseField::zero()
}
}
/// G_GENERATOR_X = -1
/// Encoded in Montgomery form, so the value here is -R mod p.
pub const G_GENERATOR_X: Fq = field_new!(Fq, "-1");
/// G_GENERATOR_Y = 2
/// Encoded in Montgomery form, so the value here is 2R mod p.
pub const G_GENERATOR_Y: Fq = field_new!(Fq, "2");

+ 39
- 0
vesta/src/curves/tests.rs

@ -0,0 +1,39 @@
#![allow(unused_imports)]
use ark_ff::{
fields::{Field, FpParameters, PrimeField, SquareRootField},
One, Zero,
};
use ark_serialize::CanonicalSerialize;
use ark_std::test_rng;
use ark_ec::{models::SWModelParameters, AffineCurve, PairingEngine, ProjectiveCurve};
use core::ops::{AddAssign, MulAssign};
use rand::Rng;
use crate::{Affine, Projective, VestaParameters};
use ark_curve_tests::{
curves::{curve_tests, sw_tests},
groups::group_test,
};
#[test]
fn test_projective_curve() {
curve_tests::<Projective>();
sw_tests::<VestaParameters>();
}
#[test]
fn test_projective_group() {
let mut rng = test_rng();
let a: Projective = rng.gen();
let b: Projective = rng.gen();
group_test(a, b);
}
#[test]
fn test_generator() {
let generator = Affine::prime_subgroup_generator();
assert!(generator.is_on_curve());
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
}

+ 1
- 0
vesta/src/fields/fq.rs

@ -0,0 +1 @@
pub use ark_pallas::{Fr as Fq, FrParameters as FqParameters};

+ 1
- 0
vesta/src/fields/fr.rs

@ -0,0 +1 @@
pub use ark_pallas::{Fq as Fr, FqParameters as FrParameters};

+ 8
- 0
vesta/src/fields/mod.rs

@ -0,0 +1,8 @@
pub mod fq;
pub use self::fq::*;
pub mod fr;
pub use self::fr::*;
#[cfg(test)]
mod tests;

+ 26
- 0
vesta/src/fields/tests.rs

@ -0,0 +1,26 @@
use ark_std::test_rng;
use rand::Rng;
use crate::*;
use ark_curve_tests::fields::*;
#[test]
fn test_fr() {
let mut rng = test_rng();
let a: Fr = rng.gen();
let b: Fr = rng.gen();
field_test(a, b);
sqrt_field_test(a);
primefield_test::<Fr>();
}
#[test]
fn test_fq() {
let mut rng = test_rng();
let a: Fq = rng.gen();
let b: Fq = rng.gen();
field_test(a, b);
sqrt_field_test(a);
primefield_test::<Fq>();
}

+ 33
- 0
vesta/src/lib.rs

@ -0,0 +1,33 @@
#![cfg_attr(not(feature = "std"), no_std)]
#![deny(
warnings,
unused,
future_incompatible,
nonstandard_style,
rust_2018_idioms
)]
#![forbid(unsafe_code)]
//! This library implements the prime-order curve Vesta, generated by
//! [Daira Hopwood](https://github.com/zcash/pasta). The main feature of this
//! curve is that it forms a cycle with Pallas, i.e. its scalar field and base
//! field respectively are the base field and scalar field of Pallas.
//!
//!
//! Curve information:
//! Vesta:
//! * Base field: q =
//! 28948022309329048855892746252171976963363056481941647379679742748393362948097
//! * Scalar field: r =
//! 28948022309329048855892746252171976963363056481941560715954676764349967630337
//! * Curve equation: y^2 = x^3 + 5
//! * Valuation(q - 1, 2) = 32
//! * Valuation(r - 1, 2) = 32
#[cfg(feature = "r1cs")]
pub mod constraints;
mod curves;
mod fields;
pub use curves::*;
pub use fields::*;

Loading…
Cancel
Save