Co-authored-by: Ying Tong Lai <yingtong@electriccoin.co> Co-authored-by: Daira Hopwood <daira@jacaranda.org> Co-authored-by: Pratyush Mishra <pratyushmishra@berkeley.edu> Co-authored-by: therealyingtong <yingtong@z.cash>fq2_neg_nonresidue
@ -0,0 +1,36 @@ |
|||
[package] |
|||
name = "ark-pallas" |
|||
version = "0.1.0" |
|||
authors = [ "Ying Tong Lai", "Daira Hopwood", "O(1) Labs", "arkworks contributors" ] |
|||
description = "The Pallas prime-order elliptic curve" |
|||
homepage = "https://arkworks.rs" |
|||
repository = "https://github.com/arkworks-rs/curves" |
|||
documentation = "https://docs.rs/ark-pallas/" |
|||
keywords = ["cryptography", "finite fields", "elliptic curves" ] |
|||
categories = ["cryptography"] |
|||
include = ["Cargo.toml", "src"] |
|||
license = "MIT/Apache-2.0" |
|||
edition = "2018" |
|||
|
|||
[dependencies] |
|||
ark-ff = { git = "https://github.com/arkworks-rs/algebra", default-features = false } |
|||
ark-ec = { git = "https://github.com/arkworks-rs/algebra", default-features = false } |
|||
ark-r1cs-std = { git = "https://github.com/arkworks-rs/r1cs-std", default-features = false, optional = true } |
|||
ark-std = { git = "https://github.com/arkworks-rs/utils", default-features = false } |
|||
|
|||
[dev-dependencies] |
|||
ark-relations = { git = "https://github.com/arkworks-rs/snark", default-features = false } |
|||
ark-serialize = { git = "https://github.com/arkworks-rs/algebra", default-features = false } |
|||
ark-curve-tests = { path = "../curve-tests", default-features = false } |
|||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false } |
|||
rand = { version = "0.7", default-features = false } |
|||
rand_xorshift = "0.2" |
|||
|
|||
[features] |
|||
default = [ "curve" ] |
|||
std = [ "ark-std/std", "ark-ff/std", "ark-ec/std" ] |
|||
|
|||
curve = [ "scalar_field", "base_field" ] |
|||
scalar_field = [] |
|||
base_field = [] |
|||
r1cs = [ "base_field", "ark-r1cs-std" ] |
@ -0,0 +1,12 @@ |
|||
use crate::*;
|
|||
use ark_r1cs_std::groups::curves::short_weierstrass::ProjectiveVar;
|
|||
|
|||
use crate::constraints::FBaseVar;
|
|||
|
|||
/// A group element in the Pallas prime-order group.
|
|||
pub type GVar = ProjectiveVar<PallasParameters, FBaseVar>;
|
|||
|
|||
#[test]
|
|||
fn test() {
|
|||
ark_curve_constraint_tests::curves::sw_test::<PallasParameters, GVar>().unwrap();
|
|||
}
|
@ -0,0 +1,10 @@ |
|||
use crate::fq::Fq;
|
|||
use ark_r1cs_std::fields::fp::FpVar;
|
|||
|
|||
/// A variable that is the R1CS equivalent of `crate::Fq`.
|
|||
pub type FBaseVar = FpVar<Fq>;
|
|||
|
|||
#[test]
|
|||
fn test() {
|
|||
ark_curve_constraint_tests::fields::field_test::<_, _, FBaseVar>().unwrap();
|
|||
}
|
@ -0,0 +1,107 @@ |
|||
//! This module implements the R1CS equivalent of `ark_pallas`.
|
|||
//!
|
|||
//! It implements field variables for `crate::Fq`,
|
|||
//! and group variables for `crate::GroupProjective`.
|
|||
//!
|
|||
//! The field underlying these constraints is `crate::Fq`.
|
|||
//!
|
|||
//! # Examples
|
|||
//!
|
|||
//! One can perform standard algebraic operations on `FBaseVar`:
|
|||
//!
|
|||
//! ```
|
|||
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
//! use ark_std::UniformRand;
|
|||
//! use ark_relations::r1cs::*;
|
|||
//! use ark_r1cs_std::prelude::*;
|
|||
//! use ark_pallas::{*, constraints::*};
|
|||
//!
|
|||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
|||
//! // This rng is just for test purposes; do not use it
|
|||
//! // in real applications.
|
|||
//! let mut rng = ark_std::test_rng();
|
|||
//!
|
|||
//! // Generate some random `Fq` elements.
|
|||
//! let a_native = Fq::rand(&mut rng);
|
|||
//! let b_native = Fq::rand(&mut rng);
|
|||
//!
|
|||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
|||
//! let a = FBaseVar::new_witness(ark_relations::ns!(cs, "generate_a"), || Ok(a_native))?;
|
|||
//! let b = FBaseVar::new_witness(ark_relations::ns!(cs, "generate_b"), || Ok(b_native))?;
|
|||
//!
|
|||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
|||
//! // constraints or variables.
|
|||
//! let a_const = FBaseVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
|
|||
//! let b_const = FBaseVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
|
|||
//!
|
|||
//! let one = FBaseVar::one();
|
|||
//! let zero = FBaseVar::zero();
|
|||
//!
|
|||
//! // Sanity check one + one = two
|
|||
//! let two = &one + &one + &zero;
|
|||
//! two.enforce_equal(&one.double()?)?;
|
|||
//!
|
|||
//! assert!(cs.is_satisfied()?);
|
|||
//!
|
|||
//! // Check that the value of &a + &b is correct.
|
|||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
|||
//!
|
|||
//! // Check that the value of &a * &b is correct.
|
|||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
|||
//!
|
|||
//! // Check that operations on variables and constants are equivalent.
|
|||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
|||
//! assert!(cs.is_satisfied()?);
|
|||
//! # Ok(())
|
|||
//! # }
|
|||
//! ```
|
|||
//!
|
|||
//! One can also perform standard algebraic operations on `GVar`:
|
|||
//!
|
|||
//! ```
|
|||
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
//! # use ark_std::UniformRand;
|
|||
//! # use ark_relations::r1cs::*;
|
|||
//! # use ark_r1cs_std::prelude::*;
|
|||
//! # use ark_pallas::{*, constraints::*};
|
|||
//!
|
|||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
|||
//! # let mut rng = ark_std::test_rng();
|
|||
//!
|
|||
//! // Generate some random `Projective` elements.
|
|||
//! let a_native = Projective::rand(&mut rng);
|
|||
//! let b_native = Projective::rand(&mut rng);
|
|||
//!
|
|||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
|||
//! let a = GVar::new_witness(ark_relations::ns!(cs, "a"), || Ok(a_native))?;
|
|||
//! let b = GVar::new_witness(ark_relations::ns!(cs, "b"), || Ok(b_native))?;
|
|||
//!
|
|||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
|||
//! // constraints or variables.
|
|||
//! let a_const = GVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
|
|||
//! let b_const = GVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
|
|||
//!
|
|||
//! // This returns the identity.
|
|||
//! let zero = GVar::zero();
|
|||
//!
|
|||
//! // Sanity check one + one = two
|
|||
//! let two_a = &a + &a + &zero;
|
|||
//! two_a.enforce_equal(&a.double()?)?;
|
|||
//!
|
|||
//! assert!(cs.is_satisfied()?);
|
|||
//!
|
|||
//! // Check that the value of &a + &b is correct.
|
|||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
|||
//!
|
|||
//! // Check that operations on variables and constants are equivalent.
|
|||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
|||
//! assert!(cs.is_satisfied()?);
|
|||
//! # Ok(())
|
|||
//! # }
|
|||
//! ```
|
|||
|
|||
mod curves;
|
|||
mod fields;
|
|||
|
|||
pub use curves::*;
|
|||
pub use fields::*;
|
@ -0,0 +1,49 @@ |
|||
use crate::{fq::Fq, fr::Fr};
|
|||
use ark_ec::{
|
|||
models::{ModelParameters, SWModelParameters},
|
|||
short_weierstrass_jacobian::{GroupAffine, GroupProjective},
|
|||
};
|
|||
use ark_ff::{field_new, Zero};
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests;
|
|||
|
|||
#[derive(Copy, Clone, Default, PartialEq, Eq)]
|
|||
pub struct PallasParameters;
|
|||
|
|||
impl ModelParameters for PallasParameters {
|
|||
type BaseField = Fq;
|
|||
type ScalarField = Fr;
|
|||
}
|
|||
|
|||
pub type Affine = GroupAffine<PallasParameters>;
|
|||
pub type Projective = GroupProjective<PallasParameters>;
|
|||
|
|||
impl SWModelParameters for PallasParameters {
|
|||
/// COEFF_A = 0
|
|||
const COEFF_A: Fq = field_new!(Fq, "0");
|
|||
|
|||
/// COEFF_B = 5
|
|||
const COEFF_B: Fq = field_new!(Fq, "5");
|
|||
|
|||
/// COFACTOR = 1
|
|||
const COFACTOR: &'static [u64] = &[0x1];
|
|||
|
|||
/// COFACTOR_INV = 1
|
|||
const COFACTOR_INV: Fr = field_new!(Fr, "1");
|
|||
|
|||
/// AFFINE_GENERATOR_COEFFS = (G1_GENERATOR_X, G1_GENERATOR_Y)
|
|||
const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField) =
|
|||
(G_GENERATOR_X, G_GENERATOR_Y);
|
|||
|
|||
#[inline(always)]
|
|||
fn mul_by_a(_: &Self::BaseField) -> Self::BaseField {
|
|||
Self::BaseField::zero()
|
|||
}
|
|||
}
|
|||
|
|||
/// G_GENERATOR_X = -1
|
|||
pub const G_GENERATOR_X: Fq = field_new!(Fq, "-1");
|
|||
|
|||
/// G_GENERATOR_Y = 2
|
|||
pub const G_GENERATOR_Y: Fq = field_new!(Fq, "2");
|
@ -0,0 +1,39 @@ |
|||
#![allow(unused_imports)]
|
|||
use ark_ff::{
|
|||
fields::{Field, FpParameters, PrimeField, SquareRootField},
|
|||
One, Zero,
|
|||
};
|
|||
use ark_serialize::CanonicalSerialize;
|
|||
use ark_std::test_rng;
|
|||
|
|||
use ark_ec::{models::SWModelParameters, AffineCurve, PairingEngine, ProjectiveCurve};
|
|||
use core::ops::{AddAssign, MulAssign};
|
|||
use rand::Rng;
|
|||
|
|||
use crate::{Affine, PallasParameters, Projective};
|
|||
|
|||
use ark_curve_tests::{
|
|||
curves::{curve_tests, sw_tests},
|
|||
groups::group_test,
|
|||
};
|
|||
|
|||
#[test]
|
|||
fn test_projective_curve() {
|
|||
curve_tests::<Projective>();
|
|||
sw_tests::<PallasParameters>();
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_projective_group() {
|
|||
let mut rng = test_rng();
|
|||
let a: Projective = rng.gen();
|
|||
let b: Projective = rng.gen();
|
|||
group_test(a, b);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_generator() {
|
|||
let generator = Affine::prime_subgroup_generator();
|
|||
assert!(generator.is_on_curve());
|
|||
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
|
|||
}
|
@ -0,0 +1,90 @@ |
|||
use ark_ff::{
|
|||
biginteger::BigInteger256 as BigInteger,
|
|||
fields::{FftParameters, Fp256, Fp256Parameters},
|
|||
};
|
|||
|
|||
pub type Fq = Fp256<FqParameters>;
|
|||
|
|||
pub struct FqParameters;
|
|||
|
|||
impl Fp256Parameters for FqParameters {}
|
|||
impl FftParameters for FqParameters {
|
|||
type BigInt = BigInteger;
|
|||
|
|||
const TWO_ADICITY: u32 = 32;
|
|||
|
|||
// TWO_ADIC_ROOT_OF_UNITY = GENERATOR^T
|
|||
// Encoded in Montgomery form, so the value here is (5^T)R mod p.
|
|||
const TWO_ADIC_ROOT_OF_UNITY: BigInteger = BigInteger([
|
|||
0xa28db849bad6dbf0,
|
|||
0x9083cd03d3b539df,
|
|||
0xfba6b9ca9dc8448e,
|
|||
0x3ec928747b89c6da,
|
|||
]);
|
|||
}
|
|||
|
|||
impl ark_ff::fields::FpParameters for FqParameters {
|
|||
// 28948022309329048855892746252171976963363056481941560715954676764349967630337
|
|||
const MODULUS: BigInteger = BigInteger([
|
|||
0x992d30ed00000001,
|
|||
0x224698fc094cf91b,
|
|||
0x0000000000000000,
|
|||
0x4000000000000000,
|
|||
]);
|
|||
|
|||
// R = 2^256 mod p
|
|||
const R: BigInteger = BigInteger([
|
|||
0x34786d38fffffffd,
|
|||
0x992c350be41914ad,
|
|||
0xffffffffffffffff,
|
|||
0x3fffffffffffffff,
|
|||
]);
|
|||
|
|||
// R2 = (2^256)^2 mod p
|
|||
const R2: BigInteger = BigInteger([
|
|||
0x8c78ecb30000000f,
|
|||
0xd7d30dbd8b0de0e7,
|
|||
0x7797a99bc3c95d18,
|
|||
0x096d41af7b9cb714,
|
|||
]);
|
|||
|
|||
const MODULUS_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
|
|||
0xcc96987680000000,
|
|||
0x11234c7e04a67c8d,
|
|||
0x0000000000000000,
|
|||
0x2000000000000000,
|
|||
]);
|
|||
|
|||
// T and T_MINUS_ONE_DIV_TWO, where MODULUS - 1 = 2^S * T
|
|||
const T: BigInteger = BigInteger([
|
|||
0x094cf91b992d30ed,
|
|||
0x00000000224698fc,
|
|||
0x0000000000000000,
|
|||
0x0000000040000000,
|
|||
]);
|
|||
|
|||
const T_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
|
|||
0x04a67c8dcc969876,
|
|||
0x0000000011234c7e,
|
|||
0x0000000000000000,
|
|||
0x0000000020000000,
|
|||
]);
|
|||
|
|||
// GENERATOR = 5
|
|||
// Encoded in Montgomery form, so the value here is 5R mod p.
|
|||
const GENERATOR: BigInteger = BigInteger([
|
|||
0xa1a55e68ffffffed,
|
|||
0x74c2a54b4f4982f3,
|
|||
0xfffffffffffffffd,
|
|||
0x3fffffffffffffff,
|
|||
]);
|
|||
|
|||
const MODULUS_BITS: u32 = 255;
|
|||
|
|||
const CAPACITY: u32 = Self::MODULUS_BITS - 1;
|
|||
|
|||
const REPR_SHAVE_BITS: u32 = 1;
|
|||
|
|||
// INV = -p^{-1} (mod 2^64)
|
|||
const INV: u64 = 11037532056220336127;
|
|||
}
|
@ -0,0 +1,91 @@ |
|||
use ark_ff::{
|
|||
biginteger::BigInteger256 as BigInteger,
|
|||
fields::{FftParameters, Fp256, Fp256Parameters, FpParameters},
|
|||
};
|
|||
|
|||
pub struct FrParameters;
|
|||
|
|||
pub type Fr = Fp256<FrParameters>;
|
|||
|
|||
impl Fp256Parameters for FrParameters {}
|
|||
impl FftParameters for FrParameters {
|
|||
type BigInt = BigInteger;
|
|||
|
|||
const TWO_ADICITY: u32 = 32;
|
|||
|
|||
// TWO_ADIC_ROOT_OF_UNITY = GENERATOR^T
|
|||
// Encoded in Montgomery form, so the value here is (5^T)R mod q.
|
|||
const TWO_ADIC_ROOT_OF_UNITY: BigInteger = BigInteger([
|
|||
0x218077428c9942de,
|
|||
0xcc49578921b60494,
|
|||
0xac2e5d27b2efbee2,
|
|||
0x0b79fa897f2db056,
|
|||
]);
|
|||
}
|
|||
|
|||
impl FpParameters for FrParameters {
|
|||
// 28948022309329048855892746252171976963363056481941647379679742748393362948097
|
|||
const MODULUS: BigInteger = BigInteger([
|
|||
0x8c46eb2100000001,
|
|||
0x224698fc0994a8dd,
|
|||
0x0000000000000000,
|
|||
0x4000000000000000,
|
|||
]);
|
|||
|
|||
// R = 2^256 mod q
|
|||
const R: BigInteger = BigInteger([
|
|||
0x5b2b3e9cfffffffd,
|
|||
0x992c350be3420567,
|
|||
0xffffffffffffffff,
|
|||
0x3fffffffffffffff,
|
|||
]);
|
|||
|
|||
// R2 = (2^256)^2 mod q
|
|||
const R2: BigInteger = BigInteger([
|
|||
0xfc9678ff0000000f,
|
|||
0x67bb433d891a16e3,
|
|||
0x7fae231004ccf590,
|
|||
0x096d41af7ccfdaa9,
|
|||
]);
|
|||
|
|||
const MODULUS_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
|
|||
0xc623759080000000,
|
|||
0x11234c7e04ca546e,
|
|||
0x0000000000000000,
|
|||
0x2000000000000000,
|
|||
]);
|
|||
|
|||
// T and T_MINUS_ONE_DIV_TWO, where MODULUS - 1 = 2^S * T
|
|||
|
|||
const T: BigInteger = BigInteger([
|
|||
0x0994a8dd8c46eb21,
|
|||
0x00000000224698fc,
|
|||
0x0000000000000000,
|
|||
0x0000000040000000,
|
|||
]);
|
|||
|
|||
const T_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
|
|||
0x04ca546ec6237590,
|
|||
0x0000000011234c7e,
|
|||
0x0000000000000000,
|
|||
0x0000000020000000,
|
|||
]);
|
|||
|
|||
// GENERATOR = 5
|
|||
// Encoded in Montgomery form, so the value here is 5R mod q.
|
|||
const GENERATOR: BigInteger = BigInteger([
|
|||
0x96bc8c8cffffffed,
|
|||
0x74c2a54b49f7778e,
|
|||
0xfffffffffffffffd,
|
|||
0x3fffffffffffffff,
|
|||
]);
|
|||
|
|||
const MODULUS_BITS: u32 = 255;
|
|||
|
|||
const CAPACITY: u32 = Self::MODULUS_BITS - 1;
|
|||
|
|||
const REPR_SHAVE_BITS: u32 = 1;
|
|||
|
|||
// INV = -q^{-1} (mod 2^64)
|
|||
const INV: u64 = 10108024940646105087;
|
|||
}
|
@ -0,0 +1,12 @@ |
|||
#[cfg(feature = "base_field")]
|
|||
pub mod fq;
|
|||
#[cfg(feature = "base_field")]
|
|||
pub use self::fq::*;
|
|||
|
|||
#[cfg(feature = "scalar_field")]
|
|||
pub mod fr;
|
|||
#[cfg(feature = "scalar_field")]
|
|||
pub use self::fr::*;
|
|||
|
|||
#[cfg(all(feature = "curve", test))]
|
|||
mod tests;
|
@ -0,0 +1,26 @@ |
|||
use ark_std::test_rng;
|
|||
use rand::Rng;
|
|||
|
|||
use crate::*;
|
|||
|
|||
use ark_curve_tests::fields::*;
|
|||
|
|||
#[test]
|
|||
fn test_fr() {
|
|||
let mut rng = test_rng();
|
|||
let a: Fr = rng.gen();
|
|||
let b: Fr = rng.gen();
|
|||
field_test(a, b);
|
|||
sqrt_field_test(a);
|
|||
primefield_test::<Fr>();
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq() {
|
|||
let mut rng = test_rng();
|
|||
let a: Fq = rng.gen();
|
|||
let b: Fq = rng.gen();
|
|||
field_test(a, b);
|
|||
sqrt_field_test(a);
|
|||
primefield_test::<Fq>();
|
|||
}
|
@ -0,0 +1,36 @@ |
|||
#![cfg_attr(not(feature = "std"), no_std)]
|
|||
#![deny(
|
|||
warnings,
|
|||
unused,
|
|||
future_incompatible,
|
|||
nonstandard_style,
|
|||
rust_2018_idioms
|
|||
)]
|
|||
#![forbid(unsafe_code)]
|
|||
|
|||
//! This library implements the prime-order curve Pallas, generated by
|
|||
//! [Daira Hopwood](https://github.com/zcash/pasta). The main feature of this
|
|||
//! curve is that it forms a cycle with Vesta, i.e. its scalar field and base
|
|||
//! field respectively are the base field and scalar field of Vesta.
|
|||
//!
|
|||
//!
|
|||
//! Curve information:
|
|||
//! * Base field: q =
|
|||
//! 28948022309329048855892746252171976963363056481941560715954676764349967630337
|
|||
//! * Scalar field: r =
|
|||
//! 28948022309329048855892746252171976963363056481941647379679742748393362948097
|
|||
//! * Curve equation: y^2 = x^3 + 5
|
|||
//! * Valuation(q - 1, 2) = 32
|
|||
//! * Valuation(r - 1, 2) = 32
|
|||
|
|||
#[cfg(feature = "r1cs")]
|
|||
pub mod constraints;
|
|||
#[cfg(feature = "curve")]
|
|||
mod curves;
|
|||
#[cfg(any(feature = "scalar_field", feature = "base_field"))]
|
|||
mod fields;
|
|||
|
|||
#[cfg(feature = "curve")]
|
|||
pub use curves::*;
|
|||
#[cfg(any(feature = "scalar_field", feature = "base_field"))]
|
|||
pub use fields::*;
|
@ -0,0 +1,33 @@ |
|||
[package] |
|||
name = "ark-vesta" |
|||
version = "0.1.0" |
|||
authors = [ "Ying Tong Lai", "Daira Hopwood", "O(1) Labs", "arkworks contributors" ] |
|||
description = "The Vesta prime-order elliptic curve" |
|||
homepage = "https://arkworks.rs" |
|||
repository = "https://github.com/arkworks-rs/curves" |
|||
documentation = "https://docs.rs/ark-vesta/" |
|||
keywords = ["cryptography", "finite fields", "elliptic curves" ] |
|||
categories = ["cryptography"] |
|||
include = ["Cargo.toml", "src"] |
|||
license = "MIT/Apache-2.0" |
|||
edition = "2018" |
|||
|
|||
[dependencies] |
|||
ark-ff = { git = "https://github.com/arkworks-rs/algebra", default-features = false } |
|||
ark-ec = { git = "https://github.com/arkworks-rs/algebra", default-features = false } |
|||
ark-r1cs-std = { git = "https://github.com/arkworks-rs/r1cs-std", default-features = false, optional = true } |
|||
ark-std = { git = "https://github.com/arkworks-rs/utils", default-features = false } |
|||
ark-pallas = { path = "../pallas", default-features = false, features = [ "scalar_field", "base_field" ] } |
|||
|
|||
[dev-dependencies] |
|||
ark-relations = { git = "https://github.com/arkworks-rs/snark", default-features = false } |
|||
ark-serialize = { git = "https://github.com/arkworks-rs/algebra", default-features = false } |
|||
ark-curve-tests = { path = "../curve-tests", default-features = false } |
|||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false } |
|||
rand = { version = "0.7", default-features = false } |
|||
rand_xorshift = "0.2" |
|||
|
|||
[features] |
|||
default = [] |
|||
std = [ "ark-std/std", "ark-ff/std", "ark-ec/std" ] |
|||
r1cs = [ "ark-r1cs-std" ] |
@ -0,0 +1,12 @@ |
|||
use crate::*;
|
|||
use ark_r1cs_std::groups::curves::short_weierstrass::ProjectiveVar;
|
|||
|
|||
use crate::constraints::FBaseVar;
|
|||
|
|||
/// A group element in the Vesta prime-order group.
|
|||
pub type GVar = ProjectiveVar<VestaParameters, FBaseVar>;
|
|||
|
|||
#[test]
|
|||
fn test() {
|
|||
ark_curve_constraint_tests::curves::sw_test::<VestaParameters, GVar>().unwrap();
|
|||
}
|
@ -0,0 +1,10 @@ |
|||
use crate::fq::Fq;
|
|||
use ark_r1cs_std::fields::fp::FpVar;
|
|||
|
|||
/// A variable that is the R1CS equivalent of `crate::Fq`.
|
|||
pub type FBaseVar = FpVar<Fq>;
|
|||
|
|||
#[test]
|
|||
fn test() {
|
|||
ark_curve_constraint_tests::fields::field_test::<_, _, FBaseVar>().unwrap();
|
|||
}
|
@ -0,0 +1,107 @@ |
|||
//! This module implements the R1CS equivalent of `ark_vesta`.
|
|||
//!
|
|||
//! It implements field variables for `crate::Fq`,
|
|||
//! and group variables for `crate::GroupProjective`.
|
|||
//!
|
|||
//! The field underlying these constraints is `crate::Fq`.
|
|||
//!
|
|||
//! # Examples
|
|||
//!
|
|||
//! One can perform standard algebraic operations on `FBaseVar`:
|
|||
//!
|
|||
//! ```
|
|||
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
//! use ark_std::UniformRand;
|
|||
//! use ark_relations::r1cs::*;
|
|||
//! use ark_r1cs_std::prelude::*;
|
|||
//! use ark_vesta::{*, constraints::*};
|
|||
//!
|
|||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
|||
//! // This rng is just for test purposes; do not use it
|
|||
//! // in real applications.
|
|||
//! let mut rng = ark_std::test_rng();
|
|||
//!
|
|||
//! // Generate some random `Fq` elements.
|
|||
//! let a_native = Fq::rand(&mut rng);
|
|||
//! let b_native = Fq::rand(&mut rng);
|
|||
//!
|
|||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
|||
//! let a = FBaseVar::new_witness(ark_relations::ns!(cs, "generate_a"), || Ok(a_native))?;
|
|||
//! let b = FBaseVar::new_witness(ark_relations::ns!(cs, "generate_b"), || Ok(b_native))?;
|
|||
//!
|
|||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
|||
//! // constraints or variables.
|
|||
//! let a_const = FBaseVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
|
|||
//! let b_const = FBaseVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
|
|||
//!
|
|||
//! let one = FBaseVar::one();
|
|||
//! let zero = FBaseVar::zero();
|
|||
//!
|
|||
//! // Sanity check one + one = two
|
|||
//! let two = &one + &one + &zero;
|
|||
//! two.enforce_equal(&one.double()?)?;
|
|||
//!
|
|||
//! assert!(cs.is_satisfied()?);
|
|||
//!
|
|||
//! // Check that the value of &a + &b is correct.
|
|||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
|||
//!
|
|||
//! // Check that the value of &a * &b is correct.
|
|||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
|||
//!
|
|||
//! // Check that operations on variables and constants are equivalent.
|
|||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
|||
//! assert!(cs.is_satisfied()?);
|
|||
//! # Ok(())
|
|||
//! # }
|
|||
//! ```
|
|||
//!
|
|||
//! One can also perform standard algebraic operations on `GVar`:
|
|||
//!
|
|||
//! ```
|
|||
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
//! # use ark_std::UniformRand;
|
|||
//! # use ark_relations::r1cs::*;
|
|||
//! # use ark_r1cs_std::prelude::*;
|
|||
//! # use ark_vesta::{*, constraints::*};
|
|||
//!
|
|||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
|||
//! # let mut rng = ark_std::test_rng();
|
|||
//!
|
|||
//! // Generate some random `Projective` elements.
|
|||
//! let a_native = Projective::rand(&mut rng);
|
|||
//! let b_native = Projective::rand(&mut rng);
|
|||
//!
|
|||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
|||
//! let a = GVar::new_witness(ark_relations::ns!(cs, "a"), || Ok(a_native))?;
|
|||
//! let b = GVar::new_witness(ark_relations::ns!(cs, "b"), || Ok(b_native))?;
|
|||
//!
|
|||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
|||
//! // constraints or variables.
|
|||
//! let a_const = GVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
|
|||
//! let b_const = GVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
|
|||
//!
|
|||
//! // This returns the identity.
|
|||
//! let zero = GVar::zero();
|
|||
//!
|
|||
//! // Sanity check one + one = two
|
|||
//! let two_a = &a + &a + &zero;
|
|||
//! two_a.enforce_equal(&a.double()?)?;
|
|||
//!
|
|||
//! assert!(cs.is_satisfied()?);
|
|||
//!
|
|||
//! // Check that the value of &a + &b is correct.
|
|||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
|||
//!
|
|||
//! // Check that operations on variables and constants are equivalent.
|
|||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
|||
//! assert!(cs.is_satisfied()?);
|
|||
//! # Ok(())
|
|||
//! # }
|
|||
//! ```
|
|||
|
|||
mod curves;
|
|||
mod fields;
|
|||
|
|||
pub use curves::*;
|
|||
pub use fields::*;
|
@ -0,0 +1,51 @@ |
|||
use crate::{fq::Fq, fr::Fr};
|
|||
use ark_ec::{
|
|||
models::{ModelParameters, SWModelParameters},
|
|||
short_weierstrass_jacobian::{GroupAffine, GroupProjective},
|
|||
};
|
|||
use ark_ff::{field_new, Zero};
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests;
|
|||
|
|||
#[derive(Copy, Clone, Default, PartialEq, Eq)]
|
|||
pub struct VestaParameters;
|
|||
|
|||
impl ModelParameters for VestaParameters {
|
|||
type BaseField = Fq;
|
|||
type ScalarField = Fr;
|
|||
}
|
|||
|
|||
pub type Affine = GroupAffine<VestaParameters>;
|
|||
pub type Projective = GroupProjective<VestaParameters>;
|
|||
|
|||
impl SWModelParameters for VestaParameters {
|
|||
/// COEFF_A = 0
|
|||
const COEFF_A: Fq = field_new!(Fq, "0");
|
|||
|
|||
/// COEFF_B = 5
|
|||
const COEFF_B: Fq = field_new!(Fq, "5");
|
|||
|
|||
/// COFACTOR = 1
|
|||
const COFACTOR: &'static [u64] = &[0x1];
|
|||
|
|||
/// COFACTOR_INV = 1
|
|||
const COFACTOR_INV: Fr = field_new!(Fr, "1");
|
|||
|
|||
/// AFFINE_GENERATOR_COEFFS = (G1_GENERATOR_X, G1_GENERATOR_Y)
|
|||
const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField) =
|
|||
(G_GENERATOR_X, G_GENERATOR_Y);
|
|||
|
|||
#[inline(always)]
|
|||
fn mul_by_a(_: &Self::BaseField) -> Self::BaseField {
|
|||
Self::BaseField::zero()
|
|||
}
|
|||
}
|
|||
|
|||
/// G_GENERATOR_X = -1
|
|||
/// Encoded in Montgomery form, so the value here is -R mod p.
|
|||
pub const G_GENERATOR_X: Fq = field_new!(Fq, "-1");
|
|||
|
|||
/// G_GENERATOR_Y = 2
|
|||
/// Encoded in Montgomery form, so the value here is 2R mod p.
|
|||
pub const G_GENERATOR_Y: Fq = field_new!(Fq, "2");
|
@ -0,0 +1,39 @@ |
|||
#![allow(unused_imports)]
|
|||
use ark_ff::{
|
|||
fields::{Field, FpParameters, PrimeField, SquareRootField},
|
|||
One, Zero,
|
|||
};
|
|||
use ark_serialize::CanonicalSerialize;
|
|||
use ark_std::test_rng;
|
|||
|
|||
use ark_ec::{models::SWModelParameters, AffineCurve, PairingEngine, ProjectiveCurve};
|
|||
use core::ops::{AddAssign, MulAssign};
|
|||
use rand::Rng;
|
|||
|
|||
use crate::{Affine, Projective, VestaParameters};
|
|||
|
|||
use ark_curve_tests::{
|
|||
curves::{curve_tests, sw_tests},
|
|||
groups::group_test,
|
|||
};
|
|||
|
|||
#[test]
|
|||
fn test_projective_curve() {
|
|||
curve_tests::<Projective>();
|
|||
sw_tests::<VestaParameters>();
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_projective_group() {
|
|||
let mut rng = test_rng();
|
|||
let a: Projective = rng.gen();
|
|||
let b: Projective = rng.gen();
|
|||
group_test(a, b);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_generator() {
|
|||
let generator = Affine::prime_subgroup_generator();
|
|||
assert!(generator.is_on_curve());
|
|||
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
|
|||
}
|
@ -0,0 +1 @@ |
|||
pub use ark_pallas::{Fr as Fq, FrParameters as FqParameters};
|
@ -0,0 +1 @@ |
|||
pub use ark_pallas::{Fq as Fr, FqParameters as FrParameters};
|
@ -0,0 +1,8 @@ |
|||
pub mod fq;
|
|||
pub use self::fq::*;
|
|||
|
|||
pub mod fr;
|
|||
pub use self::fr::*;
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests;
|
@ -0,0 +1,26 @@ |
|||
use ark_std::test_rng;
|
|||
use rand::Rng;
|
|||
|
|||
use crate::*;
|
|||
|
|||
use ark_curve_tests::fields::*;
|
|||
|
|||
#[test]
|
|||
fn test_fr() {
|
|||
let mut rng = test_rng();
|
|||
let a: Fr = rng.gen();
|
|||
let b: Fr = rng.gen();
|
|||
field_test(a, b);
|
|||
sqrt_field_test(a);
|
|||
primefield_test::<Fr>();
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq() {
|
|||
let mut rng = test_rng();
|
|||
let a: Fq = rng.gen();
|
|||
let b: Fq = rng.gen();
|
|||
field_test(a, b);
|
|||
sqrt_field_test(a);
|
|||
primefield_test::<Fq>();
|
|||
}
|
@ -0,0 +1,33 @@ |
|||
#![cfg_attr(not(feature = "std"), no_std)]
|
|||
#![deny(
|
|||
warnings,
|
|||
unused,
|
|||
future_incompatible,
|
|||
nonstandard_style,
|
|||
rust_2018_idioms
|
|||
)]
|
|||
#![forbid(unsafe_code)]
|
|||
|
|||
//! This library implements the prime-order curve Vesta, generated by
|
|||
//! [Daira Hopwood](https://github.com/zcash/pasta). The main feature of this
|
|||
//! curve is that it forms a cycle with Pallas, i.e. its scalar field and base
|
|||
//! field respectively are the base field and scalar field of Pallas.
|
|||
//!
|
|||
//!
|
|||
//! Curve information:
|
|||
//! Vesta:
|
|||
//! * Base field: q =
|
|||
//! 28948022309329048855892746252171976963363056481941647379679742748393362948097
|
|||
//! * Scalar field: r =
|
|||
//! 28948022309329048855892746252171976963363056481941560715954676764349967630337
|
|||
//! * Curve equation: y^2 = x^3 + 5
|
|||
//! * Valuation(q - 1, 2) = 32
|
|||
//! * Valuation(r - 1, 2) = 32
|
|||
|
|||
#[cfg(feature = "r1cs")]
|
|||
pub mod constraints;
|
|||
mod curves;
|
|||
mod fields;
|
|||
|
|||
pub use curves::*;
|
|||
pub use fields::*;
|