|
use ark_ec::{
|
|
bls12,
|
|
bls12::Bls12Parameters,
|
|
models::CurveConfig,
|
|
short_weierstrass::{Affine, SWCurveConfig},
|
|
AffineCurve,
|
|
};
|
|
use ark_ff::{Field, MontFp, Zero};
|
|
|
|
use crate::*;
|
|
|
|
pub type G2Affine = bls12::G2Affine<crate::Parameters>;
|
|
pub type G2Projective = bls12::G2Projective<crate::Parameters>;
|
|
|
|
#[derive(Clone, Default, PartialEq, Eq)]
|
|
pub struct Parameters;
|
|
|
|
impl CurveConfig for Parameters {
|
|
type BaseField = Fq2;
|
|
type ScalarField = Fr;
|
|
|
|
/// COFACTOR = (x^8 - 4 x^7 + 5 x^6) - (4 x^4 + 6 x^3 - 4 x^2 - 4 x + 13) //
|
|
/// 9
|
|
/// = 305502333931268344200999753193121504214466019254188142667664032982267604182971884026507427359259977847832272839041616661285803823378372096355777062779109
|
|
#[rustfmt::skip]
|
|
const COFACTOR: &'static [u64] = &[
|
|
0xcf1c38e31c7238e5,
|
|
0x1616ec6e786f0c70,
|
|
0x21537e293a6691ae,
|
|
0xa628f1cb4d9e82ef,
|
|
0xa68a205b2e5a7ddf,
|
|
0xcd91de4547085aba,
|
|
0x91d50792876a202,
|
|
0x5d543a95414e7f1,
|
|
];
|
|
|
|
/// COFACTOR_INV = COFACTOR^{-1} mod r
|
|
/// 26652489039290660355457965112010883481355318854675681319708643586776743290055
|
|
const COFACTOR_INV: Fr =
|
|
MontFp!("26652489039290660355457965112010883481355318854675681319708643586776743290055");
|
|
}
|
|
|
|
impl SWCurveConfig for Parameters {
|
|
/// COEFF_A = [0, 0]
|
|
const COEFF_A: Fq2 = Fq2::new(g1::Parameters::COEFF_A, g1::Parameters::COEFF_A);
|
|
|
|
/// COEFF_B = [4, 4]
|
|
const COEFF_B: Fq2 = Fq2::new(g1::Parameters::COEFF_B, g1::Parameters::COEFF_B);
|
|
|
|
/// AFFINE_GENERATOR_COEFFS = (G2_GENERATOR_X, G2_GENERATOR_Y)
|
|
const GENERATOR: G2Affine = G2Affine::new_unchecked(G2_GENERATOR_X, G2_GENERATOR_Y);
|
|
|
|
#[inline(always)]
|
|
fn mul_by_a(_: &Self::BaseField) -> Self::BaseField {
|
|
Self::BaseField::zero()
|
|
}
|
|
|
|
fn is_in_correct_subgroup_assuming_on_curve(point: &G2Affine) -> bool {
|
|
// Algorithm from Section 4 of https://eprint.iacr.org/2021/1130.
|
|
//
|
|
// Checks that [p]P = [X]P
|
|
|
|
let mut x_times_point = point.mul_bigint(crate::Parameters::X);
|
|
if crate::Parameters::X_IS_NEGATIVE {
|
|
x_times_point = -x_times_point;
|
|
}
|
|
|
|
let p_times_point = p_power_endomorphism(point);
|
|
|
|
x_times_point.eq(&p_times_point)
|
|
}
|
|
}
|
|
|
|
pub const G2_GENERATOR_X: Fq2 = Fq2::new(G2_GENERATOR_X_C0, G2_GENERATOR_X_C1);
|
|
pub const G2_GENERATOR_Y: Fq2 = Fq2::new(G2_GENERATOR_Y_C0, G2_GENERATOR_Y_C1);
|
|
|
|
/// G2_GENERATOR_X_C0 =
|
|
/// 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160
|
|
pub const G2_GENERATOR_X_C0: Fq = MontFp!("352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160");
|
|
|
|
/// G2_GENERATOR_X_C1 =
|
|
/// 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758
|
|
pub const G2_GENERATOR_X_C1: Fq = MontFp!("3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758");
|
|
|
|
/// G2_GENERATOR_Y_C0 =
|
|
/// 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905
|
|
pub const G2_GENERATOR_Y_C0: Fq = MontFp!("1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905");
|
|
|
|
/// G2_GENERATOR_Y_C1 =
|
|
/// 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582
|
|
pub const G2_GENERATOR_Y_C1: Fq = MontFp!("927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582");
|
|
|
|
// psi(x,y) = (x**p * PSI_X, y**p * PSI_Y) is the Frobenius composed
|
|
// with the quadratic twist and its inverse
|
|
|
|
// PSI_X = 1/(u+1)^((p-1)/3)
|
|
pub const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = Fq2::new(
|
|
Fq::ZERO,
|
|
MontFp!(
|
|
"4002409555221667392624310435006688643935503118305586438271171395842971157480381377015405980053539358417135540939437"
|
|
)
|
|
);
|
|
|
|
// PSI_Y = 1/(u+1)^((p-1)/2)
|
|
pub const P_POWER_ENDOMORPHISM_COEFF_1: Fq2 = Fq2::new(
|
|
MontFp!(
|
|
"2973677408986561043442465346520108879172042883009249989176415018091420807192182638567116318576472649347015917690530"),
|
|
MontFp!(
|
|
"1028732146235106349975324479215795277384839936929757896155643118032610843298655225875571310552543014690878354869257")
|
|
);
|
|
|
|
pub fn p_power_endomorphism(p: &Affine<Parameters>) -> Affine<Parameters> {
|
|
// The p-power endomorphism for G2 is defined as follows:
|
|
// 1. Note that G2 is defined on curve E': y^2 = x^3 + 4(u+1).
|
|
// To map a point (x, y) in E' to (s, t) in E,
|
|
// one set s = x / ((u+1) ^ (1/3)), t = y / ((u+1) ^ (1/2)),
|
|
// because E: y^2 = x^3 + 4.
|
|
// 2. Apply the Frobenius endomorphism (s, t) => (s', t'),
|
|
// another point on curve E, where s' = s^p, t' = t^p.
|
|
// 3. Map the point from E back to E'; that is,
|
|
// one set x' = s' * ((u+1) ^ (1/3)), y' = t' * ((u+1) ^ (1/2)).
|
|
//
|
|
// To sum up, it maps
|
|
// (x,y) -> (x^p / ((u+1)^((p-1)/3)), y^p / ((u+1)^((p-1)/2)))
|
|
// as implemented in the code as follows.
|
|
|
|
let mut res = *p;
|
|
res.x.frobenius_map(1);
|
|
res.y.frobenius_map(1);
|
|
|
|
let tmp_x = res.x.clone();
|
|
res.x.c0 = -P_POWER_ENDOMORPHISM_COEFF_0.c1 * &tmp_x.c1;
|
|
res.x.c1 = P_POWER_ENDOMORPHISM_COEFF_0.c1 * &tmp_x.c0;
|
|
res.y *= P_POWER_ENDOMORPHISM_COEFF_1;
|
|
|
|
res
|
|
}
|