mirror of
https://github.com/arnaucube/ark-r1cs-std.git
synced 2026-01-09 23:41:33 +01:00
Add examples and doctests for instantiated curves
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
use algebra::{
|
||||
fields::{CubicExtField, CubicExtParameters, Field},
|
||||
One, Zero,
|
||||
Zero,
|
||||
};
|
||||
use core::{borrow::Borrow, marker::PhantomData};
|
||||
use r1cs_core::{ConstraintSystemRef, Namespace, SynthesisError};
|
||||
@@ -266,14 +266,20 @@ where
|
||||
|
||||
#[tracing::instrument(target = "r1cs")]
|
||||
fn inverse(&self) -> Result<Self, SynthesisError> {
|
||||
let cs = self.cs().get()?.clone();
|
||||
let one = Self::new_constant(cs.clone(), CubicExtField::one())?;
|
||||
|
||||
let inverse = Self::new_witness(self.cs().get()?.clone(), || {
|
||||
self.value()
|
||||
.map(|f| f.inverse().unwrap_or(CubicExtField::zero()))
|
||||
})?;
|
||||
self.mul_equals(&inverse, &one)?;
|
||||
let mode = if self.is_constant() {
|
||||
AllocationMode::Constant
|
||||
} else {
|
||||
AllocationMode::Witness
|
||||
};
|
||||
let inverse = Self::new_variable(
|
||||
self.cs().get()?.clone(),
|
||||
|| {
|
||||
self.value()
|
||||
.map(|f| f.inverse().unwrap_or(CubicExtField::zero()))
|
||||
},
|
||||
mode,
|
||||
)?;
|
||||
self.mul_equals(&inverse, &Self::one())?;
|
||||
Ok(inverse)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -48,7 +48,7 @@ impl<F: PrimeField> R1CSVar<F> for FpVar<F> {
|
||||
|
||||
fn cs(&self) -> Option<ConstraintSystemRef<F>> {
|
||||
match self {
|
||||
Self::Constant(_) => None,
|
||||
Self::Constant(_) => Some(ConstraintSystemRef::None),
|
||||
Self::Var(a) => Some(a.cs.clone()),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use algebra::{
|
||||
fields::{Field, QuadExtField, QuadExtParameters},
|
||||
One, Zero,
|
||||
Zero,
|
||||
};
|
||||
use core::{borrow::Borrow, marker::PhantomData};
|
||||
use r1cs_core::{ConstraintSystemRef, Namespace, SynthesisError};
|
||||
@@ -273,12 +273,20 @@ where
|
||||
|
||||
#[tracing::instrument(target = "r1cs")]
|
||||
fn inverse(&self) -> Result<Self, SynthesisError> {
|
||||
let one = Self::new_constant(self.cs().get()?.clone(), QuadExtField::one())?;
|
||||
let inverse = Self::new_witness(self.cs().get()?.clone(), || {
|
||||
self.value()
|
||||
.map(|f| f.inverse().unwrap_or(QuadExtField::zero()))
|
||||
})?;
|
||||
self.mul_equals(&inverse, &one)?;
|
||||
let mode = if self.is_constant() {
|
||||
AllocationMode::Constant
|
||||
} else {
|
||||
AllocationMode::Witness
|
||||
};
|
||||
let inverse = Self::new_variable(
|
||||
self.cs().get()?.clone(),
|
||||
|| {
|
||||
self.value()
|
||||
.map(|f| f.inverse().unwrap_or(QuadExtField::zero()))
|
||||
},
|
||||
mode,
|
||||
)?;
|
||||
self.mul_equals(&inverse, &Self::one())?;
|
||||
Ok(inverse)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -154,7 +154,11 @@ where
|
||||
pub fn to_affine(&self) -> Result<AffineVar<P, F>, SynthesisError> {
|
||||
let cs = self.cs().unwrap_or(ConstraintSystemRef::None);
|
||||
let mode = if self.is_constant() {
|
||||
AllocationMode::Constant
|
||||
let point = self.value()?.into_affine();
|
||||
let x = F::new_constant(ConstraintSystemRef::None, point.x)?;
|
||||
let y = F::new_constant(ConstraintSystemRef::None, point.y)?;
|
||||
let infinity = Boolean::constant(point.infinity);
|
||||
return Ok(AffineVar::new(x, y, infinity));
|
||||
} else {
|
||||
AllocationMode::Witness
|
||||
};
|
||||
|
||||
@@ -461,7 +461,11 @@ where
|
||||
#[inline]
|
||||
#[tracing::instrument(target = "r1cs")]
|
||||
fn double_in_place(&mut self) -> Result<(), SynthesisError> {
|
||||
if let Some(cs) = self.cs() {
|
||||
if self.is_constant() {
|
||||
let value = self.value()?;
|
||||
*self = Self::constant(value.double());
|
||||
} else {
|
||||
let cs = self.cs().unwrap();
|
||||
let a = P::COEFF_A;
|
||||
|
||||
// xy
|
||||
@@ -496,9 +500,6 @@ where
|
||||
y3.mul_equals(&two_minus_ax2_minus_y2, &y2_minus_a_x2)?;
|
||||
self.x = x3;
|
||||
self.y = y3;
|
||||
} else {
|
||||
let value = self.value()?;
|
||||
*self = Self::constant(value.double());
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@@ -708,7 +709,12 @@ impl_bounded_ops!(
|
||||
AddAssign,
|
||||
add_assign,
|
||||
|this: &'a AffineVar<P, F>, other: &'a AffineVar<P, F>| {
|
||||
if let Some(cs) = [this, other].cs() {
|
||||
|
||||
if [this, other].is_constant() {
|
||||
assert!(this.is_constant() && other.is_constant());
|
||||
AffineVar::constant(this.value().unwrap() + &other.value().unwrap())
|
||||
} else {
|
||||
let cs = [this, other].cs().unwrap();
|
||||
let a = P::COEFF_A;
|
||||
let d = P::COEFF_D;
|
||||
|
||||
@@ -752,9 +758,6 @@ impl_bounded_ops!(
|
||||
y3.mul_equals(&one_minus_v2, &u_plus_a_v0_minus_v1).unwrap();
|
||||
|
||||
AffineVar::new(x3, y3)
|
||||
} else {
|
||||
assert!(this.is_constant() && other.is_constant());
|
||||
AffineVar::constant(this.value().unwrap() + &other.value().unwrap())
|
||||
}
|
||||
},
|
||||
|this: &'a AffineVar<P, F>, other: TEProjective<P>| this + AffineVar::constant(other),
|
||||
|
||||
@@ -4,6 +4,7 @@ use crate::fields::{fp::FpVar, fp12::Fp12Var, fp2::Fp2Var, fp6_3over2::Fp6Var};
|
||||
|
||||
/// A variable that is the R1CS equivalent of `algebra::bls12_377::Fq`.
|
||||
pub type FqVar = FpVar<Fq>;
|
||||
|
||||
/// A variable that is the R1CS equivalent of `algebra::bls12_377::Fq2`.
|
||||
pub type Fq2Var = Fp2Var<Fq2Parameters>;
|
||||
/// A variable that is the R1CS equivalent of `algebra::bls12_377::Fq6`.
|
||||
|
||||
@@ -1,3 +1,153 @@
|
||||
//! This module implements the R1CS equivalent of `algebra::bls12_377`.
|
||||
//!
|
||||
//! It implements field variables for `algebra::bls12_377::{Fq, Fq2, Fq6, Fq12}`,
|
||||
//! group variables for `algebra::bls12_377::{G1, G2}`, and implements constraint
|
||||
//! generation for computing `Bls12_377::pairing`.
|
||||
//!
|
||||
//! The field underlying these constraints is `algebra::bls12_377::Fq`.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! One can perform standard algebraic operations on `FqVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! use algebra::{UniformRand, bls12_377::*};
|
||||
//! use r1cs_core::*;
|
||||
//! use r1cs_std::prelude::*;
|
||||
//! use r1cs_std::bls12_377::*;
|
||||
//!
|
||||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! // This rng is just for test purposes; do not use it
|
||||
//! // in real applications.
|
||||
//! let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Fq` elements.
|
||||
//! let a_native = Fq::rand(&mut rng);
|
||||
//! let b_native = Fq::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = FqVar::new_witness(r1cs_core::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
//! let b = FqVar::new_witness(r1cs_core::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = FqVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = FqVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let one = FqVar::one();
|
||||
//! let zero = FqVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two = &one + &one + &zero;
|
||||
//! two.enforce_equal(&one.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that the value of &a * &b is correct.
|
||||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! One can also perform standard algebraic operations on `G1Var` and `G2Var`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, bls12_377::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::bls12_377::*;
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `G1` elements.
|
||||
//! let a_native = G1Projective::rand(&mut rng);
|
||||
//! let b_native = G1Projective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = G1Var::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = G1Var::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = G1Var::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = G1Var::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! // This returns the identity of `G1`.
|
||||
//! let zero = G1Var::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two_a = &a + &a + &zero;
|
||||
//! two_a.enforce_equal(&a.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! Finally, one can check pairing computations as well:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, PairingEngine, bls12_377::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::bls12_377::{self, *};
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate random `G1` and `G2` elements.
|
||||
//! let a_native = G1Projective::rand(&mut rng);
|
||||
//! let b_native = G2Projective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = G1Var::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = G2Var::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = G1Var::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = G2Var::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let pairing_result_native = Bls12_377::pairing(a_native, b_native);
|
||||
//!
|
||||
//! // Prepare `a` and `b` for pairing.
|
||||
//! let a_prep = bls12_377::PairingVar::prepare_g1(&a)?;
|
||||
//! let b_prep = bls12_377::PairingVar::prepare_g2(&b)?;
|
||||
//! let pairing_result = bls12_377::PairingVar::pairing(a_prep, b_prep)?;
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!(pairing_result.value()?, pairing_result_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! let a_prep_const = bls12_377::PairingVar::prepare_g1(&a_const)?;
|
||||
//! let b_prep_const = bls12_377::PairingVar::prepare_g2(&b_const)?;
|
||||
//! let pairing_result_const = bls12_377::PairingVar::pairing(a_prep_const, b_prep_const)?;
|
||||
//! println!("Done here 3");
|
||||
//!
|
||||
//! pairing_result.enforce_equal(&pairing_result_const)?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
|
||||
mod curves;
|
||||
mod fields;
|
||||
mod pairing;
|
||||
|
||||
@@ -1,3 +1,105 @@
|
||||
//! This module implements the R1CS equivalent of `algebra::ed_on_bls12_377`.
|
||||
//!
|
||||
//! It implements field variables for `algebra::ed_on_bls12_377::Fq`,
|
||||
//! and group variables for `algebra::ed_on_bls12_377::GroupProjective`.
|
||||
//!
|
||||
//! The field underlying these constraints is `algebra::ed_on_bls12_377::Fq`.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! One can perform standard algebraic operations on `FqVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! use algebra::{UniformRand, ed_on_bls12_377::*};
|
||||
//! use r1cs_core::*;
|
||||
//! use r1cs_std::prelude::*;
|
||||
//! use r1cs_std::ed_on_bls12_377::*;
|
||||
//!
|
||||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! // This rng is just for test purposes; do not use it
|
||||
//! // in real applications.
|
||||
//! let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Fq` elements.
|
||||
//! let a_native = Fq::rand(&mut rng);
|
||||
//! let b_native = Fq::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = FqVar::new_witness(r1cs_core::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
//! let b = FqVar::new_witness(r1cs_core::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = FqVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = FqVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let one = FqVar::one();
|
||||
//! let zero = FqVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two = &one + &one + &zero;
|
||||
//! two.enforce_equal(&one.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that the value of &a * &b is correct.
|
||||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! One can also perform standard algebraic operations on `EdwardsVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, ed_on_bls12_377::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::ed_on_bls12_377::*;
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Edwards` elements.
|
||||
//! let a_native = EdwardsProjective::rand(&mut rng);
|
||||
//! let b_native = EdwardsProjective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = EdwardsVar::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = EdwardsVar::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! // This returns the identity.
|
||||
//! let zero = EdwardsVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two_a = &a + &a + &zero;
|
||||
//! two_a.enforce_equal(&a.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
|
||||
mod curves;
|
||||
mod fields;
|
||||
|
||||
|
||||
@@ -1,3 +1,105 @@
|
||||
//! This module implements the R1CS equivalent of `algebra::ed_on_bls12_381`.
|
||||
//!
|
||||
//! It implements field variables for `algebra::ed_on_bls12_381::Fq`,
|
||||
//! and group variables for `algebra::ed_on_bls12_381::GroupProjective`.
|
||||
//!
|
||||
//! The field underlying these constraints is `algebra::ed_on_bls12_381::Fq`.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! One can perform standard algebraic operations on `FqVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! use algebra::{UniformRand, ed_on_bls12_381::*};
|
||||
//! use r1cs_core::*;
|
||||
//! use r1cs_std::prelude::*;
|
||||
//! use r1cs_std::ed_on_bls12_381::*;
|
||||
//!
|
||||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! // This rng is just for test purposes; do not use it
|
||||
//! // in real applications.
|
||||
//! let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Fq` elements.
|
||||
//! let a_native = Fq::rand(&mut rng);
|
||||
//! let b_native = Fq::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = FqVar::new_witness(r1cs_core::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
//! let b = FqVar::new_witness(r1cs_core::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = FqVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = FqVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let one = FqVar::one();
|
||||
//! let zero = FqVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two = &one + &one + &zero;
|
||||
//! two.enforce_equal(&one.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that the value of &a * &b is correct.
|
||||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! One can also perform standard algebraic operations on `EdwardsVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, ed_on_bls12_381::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::ed_on_bls12_381::*;
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Edwards` elements.
|
||||
//! let a_native = EdwardsProjective::rand(&mut rng);
|
||||
//! let b_native = EdwardsProjective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = EdwardsVar::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = EdwardsVar::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! // This returns the identity of `Edwards`.
|
||||
//! let zero = EdwardsVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two_a = &a + &a + &zero;
|
||||
//! two_a.enforce_equal(&a.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
|
||||
mod curves;
|
||||
mod fields;
|
||||
|
||||
|
||||
@@ -1,3 +1,105 @@
|
||||
//! This module implements the R1CS equivalent of `algebra::ed_on_bn254`.
|
||||
//!
|
||||
//! It implements field variables for `algebra::ed_on_bn254::Fq`,
|
||||
//! and group variables for `algebra::ed_on_bn254::GroupProjective`.
|
||||
//!
|
||||
//! The field underlying these constraints is `algebra::ed_on_bn254::Fq`.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! One can perform standard algebraic operations on `FqVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! use algebra::{UniformRand, ed_on_bn254::*};
|
||||
//! use r1cs_core::*;
|
||||
//! use r1cs_std::prelude::*;
|
||||
//! use r1cs_std::ed_on_bn254::*;
|
||||
//!
|
||||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! // This rng is just for test purposes; do not use it
|
||||
//! // in real applications.
|
||||
//! let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Fq` elements.
|
||||
//! let a_native = Fq::rand(&mut rng);
|
||||
//! let b_native = Fq::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = FqVar::new_witness(r1cs_core::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
//! let b = FqVar::new_witness(r1cs_core::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = FqVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = FqVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let one = FqVar::one();
|
||||
//! let zero = FqVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two = &one + &one + &zero;
|
||||
//! two.enforce_equal(&one.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that the value of &a * &b is correct.
|
||||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! One can also perform standard algebraic operations on `EdwardsVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, ed_on_bn254::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::ed_on_bn254::*;
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Edwards` elements.
|
||||
//! let a_native = EdwardsProjective::rand(&mut rng);
|
||||
//! let b_native = EdwardsProjective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = EdwardsVar::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = EdwardsVar::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! // This returns the identity of `Edwards`.
|
||||
//! let zero = EdwardsVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two_a = &a + &a + &zero;
|
||||
//! two_a.enforce_equal(&a.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
|
||||
mod curves;
|
||||
mod fields;
|
||||
|
||||
|
||||
@@ -1 +1,103 @@
|
||||
//! This module implements the R1CS equivalent of `algebra::ed_on_bw6_761`.
|
||||
//!
|
||||
//! It implements field variables for `algebra::ed_on_bw6_761::Fq`,
|
||||
//! and group variables for `algebra::ed_on_bw6_761::GroupProjective`.
|
||||
//!
|
||||
//! The field underlying these constraints is `algebra::ed_on_bw6_761::Fq`.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! One can perform standard algebraic operations on `FqVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! use algebra::{UniformRand, ed_on_bw6_761::*};
|
||||
//! use r1cs_core::*;
|
||||
//! use r1cs_std::prelude::*;
|
||||
//! use r1cs_std::ed_on_bw6_761::*;
|
||||
//!
|
||||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! // This rng is just for test purposes; do not use it
|
||||
//! // in real applications.
|
||||
//! let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Fq` elements.
|
||||
//! let a_native = Fq::rand(&mut rng);
|
||||
//! let b_native = Fq::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = FqVar::new_witness(r1cs_core::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
//! let b = FqVar::new_witness(r1cs_core::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = FqVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = FqVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let one = FqVar::one();
|
||||
//! let zero = FqVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two = &one + &one + &zero;
|
||||
//! two.enforce_equal(&one.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that the value of &a * &b is correct.
|
||||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! One can also perform standard algebraic operations on `EdwardsVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, ed_on_bw6_761::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::ed_on_bw6_761::*;
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Edwards` elements.
|
||||
//! let a_native = EdwardsProjective::rand(&mut rng);
|
||||
//! let b_native = EdwardsProjective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = EdwardsVar::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = EdwardsVar::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! // This returns the identity of `Edwards`.
|
||||
//! let zero = EdwardsVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two_a = &a + &a + &zero;
|
||||
//! two_a.enforce_equal(&a.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
|
||||
pub use crate::instantiated::ed_on_cp6_782::*;
|
||||
|
||||
@@ -1,4 +1,105 @@
|
||||
#![allow(unreachable_pub)]
|
||||
//! This module implements the R1CS equivalent of `algebra::ed_on_cp6_782`.
|
||||
//!
|
||||
//! It implements field variables for `algebra::ed_on_cp6_782::Fq`,
|
||||
//! and group variables for `algebra::ed_on_cp6_782::GroupProjective`.
|
||||
//!
|
||||
//! The field underlying these constraints is `algebra::ed_on_cp6_782::Fq`.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! One can perform standard algebraic operations on `FqVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! use algebra::{UniformRand, ed_on_cp6_782::*};
|
||||
//! use r1cs_core::*;
|
||||
//! use r1cs_std::prelude::*;
|
||||
//! use r1cs_std::ed_on_cp6_782::*;
|
||||
//!
|
||||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! // This rng is just for test purposes; do not use it
|
||||
//! // in real applications.
|
||||
//! let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Fq` elements.
|
||||
//! let a_native = Fq::rand(&mut rng);
|
||||
//! let b_native = Fq::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = FqVar::new_witness(r1cs_core::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
//! let b = FqVar::new_witness(r1cs_core::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = FqVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = FqVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let one = FqVar::one();
|
||||
//! let zero = FqVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two = &one + &one + &zero;
|
||||
//! two.enforce_equal(&one.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that the value of &a * &b is correct.
|
||||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! One can also perform standard algebraic operations on `EdwardsVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, ed_on_cp6_782::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::ed_on_cp6_782::*;
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Edwards` elements.
|
||||
//! let a_native = EdwardsProjective::rand(&mut rng);
|
||||
//! let b_native = EdwardsProjective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = EdwardsVar::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = EdwardsVar::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! // This returns the identity of `Edwards`.
|
||||
//! let zero = EdwardsVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two_a = &a + &a + &zero;
|
||||
//! two_a.enforce_equal(&a.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
|
||||
mod curves;
|
||||
mod fields;
|
||||
|
||||
@@ -1,3 +1,105 @@
|
||||
//! This module implements the R1CS equivalent of `algebra::ed_on_mnt4_298`.
|
||||
//!
|
||||
//! It implements field variables for `algebra::ed_on_mnt4_298::Fq`,
|
||||
//! and group variables for `algebra::ed_on_mnt4_298::GroupProjective`.
|
||||
//!
|
||||
//! The field underlying these constraints is `algebra::ed_on_mnt4_298::Fq`.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! One can perform standard algebraic operations on `FqVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! use algebra::{UniformRand, ed_on_mnt4_298::*};
|
||||
//! use r1cs_core::*;
|
||||
//! use r1cs_std::prelude::*;
|
||||
//! use r1cs_std::ed_on_mnt4_298::*;
|
||||
//!
|
||||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! // This rng is just for test purposes; do not use it
|
||||
//! // in real applications.
|
||||
//! let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Fq` elements.
|
||||
//! let a_native = Fq::rand(&mut rng);
|
||||
//! let b_native = Fq::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = FqVar::new_witness(r1cs_core::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
//! let b = FqVar::new_witness(r1cs_core::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = FqVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = FqVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let one = FqVar::one();
|
||||
//! let zero = FqVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two = &one + &one + &zero;
|
||||
//! two.enforce_equal(&one.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that the value of &a * &b is correct.
|
||||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! One can also perform standard algebraic operations on `EdwardsVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, ed_on_mnt4_298::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::ed_on_mnt4_298::*;
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Edwards` elements.
|
||||
//! let a_native = EdwardsProjective::rand(&mut rng);
|
||||
//! let b_native = EdwardsProjective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = EdwardsVar::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = EdwardsVar::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! // This returns the identity of `Edwards`.
|
||||
//! let zero = EdwardsVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two_a = &a + &a + &zero;
|
||||
//! two_a.enforce_equal(&a.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
|
||||
mod curves;
|
||||
mod fields;
|
||||
|
||||
|
||||
@@ -1,3 +1,105 @@
|
||||
//! This module implements the R1CS equivalent of `algebra::ed_on_mnt4_753`.
|
||||
//!
|
||||
//! It implements field variables for `algebra::ed_on_mnt4_753::Fq`,
|
||||
//! and group variables for `algebra::ed_on_mnt4_753::GroupProjective`.
|
||||
//!
|
||||
//! The field underlying these constraints is `algebra::ed_on_mnt4_753::Fq`.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! One can perform standard algebraic operations on `FqVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! use algebra::{UniformRand, ed_on_mnt4_753::*};
|
||||
//! use r1cs_core::*;
|
||||
//! use r1cs_std::prelude::*;
|
||||
//! use r1cs_std::ed_on_mnt4_753::*;
|
||||
//!
|
||||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! // This rng is just for test purposes; do not use it
|
||||
//! // in real applications.
|
||||
//! let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Fq` elements.
|
||||
//! let a_native = Fq::rand(&mut rng);
|
||||
//! let b_native = Fq::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = FqVar::new_witness(r1cs_core::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
//! let b = FqVar::new_witness(r1cs_core::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = FqVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = FqVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let one = FqVar::one();
|
||||
//! let zero = FqVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two = &one + &one + &zero;
|
||||
//! two.enforce_equal(&one.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that the value of &a * &b is correct.
|
||||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! One can also perform standard algebraic operations on `EdwardsVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, ed_on_mnt4_753::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::ed_on_mnt4_753::*;
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Edwards` elements.
|
||||
//! let a_native = EdwardsProjective::rand(&mut rng);
|
||||
//! let b_native = EdwardsProjective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = EdwardsVar::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = EdwardsVar::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = EdwardsVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! // This returns the identity of `Edwards`.
|
||||
//! let zero = EdwardsVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two_a = &a + &a + &zero;
|
||||
//! two_a.enforce_equal(&a.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
|
||||
mod curves;
|
||||
mod fields;
|
||||
|
||||
|
||||
@@ -1,3 +1,153 @@
|
||||
//! This module implements the R1CS equivalent of `algebra::mnt4_298`.
|
||||
//!
|
||||
//! It implements field variables for `algebra::mnt4_298::{Fq, Fq2, Fq4}`,
|
||||
//! group variables for `algebra::mnt4_298::{G1, G2}`, and implements constraint
|
||||
//! generation for computing `MNT4_298::pairing`.
|
||||
//!
|
||||
//! The field underlying these constraints is `algebra::mnt4_298::Fq`.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! One can perform standard algebraic operations on `FqVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! use algebra::{UniformRand, mnt4_298::*};
|
||||
//! use r1cs_core::*;
|
||||
//! use r1cs_std::prelude::*;
|
||||
//! use r1cs_std::mnt4_298::*;
|
||||
//!
|
||||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! // This rng is just for test purposes; do not use it
|
||||
//! // in real applications.
|
||||
//! let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Fq` elements.
|
||||
//! let a_native = Fq::rand(&mut rng);
|
||||
//! let b_native = Fq::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = FqVar::new_witness(r1cs_core::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
//! let b = FqVar::new_witness(r1cs_core::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = FqVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = FqVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let one = FqVar::one();
|
||||
//! let zero = FqVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two = &one + &one + &zero;
|
||||
//! two.enforce_equal(&one.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that the value of &a * &b is correct.
|
||||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! One can also perform standard algebraic operations on `G1Var` and `G2Var`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, mnt4_298::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::mnt4_298::*;
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `G1` elements.
|
||||
//! let a_native = G1Projective::rand(&mut rng);
|
||||
//! let b_native = G1Projective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = G1Var::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = G1Var::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = G1Var::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = G1Var::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! // This returns the identity of `G1`.
|
||||
//! let zero = G1Var::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two_a = &a + &a + &zero;
|
||||
//! two_a.enforce_equal(&a.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! Finally, one can check pairing computations as well:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, PairingEngine, mnt4_298::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::mnt4_298::{self, *};
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate random `G1` and `G2` elements.
|
||||
//! let a_native = G1Projective::rand(&mut rng);
|
||||
//! let b_native = G2Projective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = G1Var::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = G2Var::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = G1Var::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = G2Var::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let pairing_result_native = MNT4_298::pairing(a_native, b_native);
|
||||
//!
|
||||
//! // Prepare `a` and `b` for pairing.
|
||||
//! let a_prep = mnt4_298::PairingVar::prepare_g1(&a)?;
|
||||
//! let b_prep = mnt4_298::PairingVar::prepare_g2(&b)?;
|
||||
//! let pairing_result = mnt4_298::PairingVar::pairing(a_prep, b_prep)?;
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!(pairing_result.value()?, pairing_result_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! let a_prep_const = mnt4_298::PairingVar::prepare_g1(&a_const)?;
|
||||
//! let b_prep_const = mnt4_298::PairingVar::prepare_g2(&b_const)?;
|
||||
//! let pairing_result_const = mnt4_298::PairingVar::pairing(a_prep_const, b_prep_const)?;
|
||||
//! println!("Done here 3");
|
||||
//!
|
||||
//! pairing_result.enforce_equal(&pairing_result_const)?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
|
||||
mod curves;
|
||||
mod fields;
|
||||
mod pairing;
|
||||
|
||||
@@ -1,3 +1,153 @@
|
||||
//! This module implements the R1CS equivalent of `algebra::mnt4_753`.
|
||||
//!
|
||||
//! It implements field variables for `algebra::mnt4_753::{Fq, Fq2, Fq4}`,
|
||||
//! group variables for `algebra::mnt4_753::{G1, G2}`, and implements constraint
|
||||
//! generation for computing `MNT4_753::pairing`.
|
||||
//!
|
||||
//! The field underlying these constraints is `algebra::mnt4_753::Fq`.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! One can perform standard algebraic operations on `FqVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! use algebra::{UniformRand, mnt4_753::*};
|
||||
//! use r1cs_core::*;
|
||||
//! use r1cs_std::prelude::*;
|
||||
//! use r1cs_std::mnt4_753::*;
|
||||
//!
|
||||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! // This rng is just for test purposes; do not use it
|
||||
//! // in real applications.
|
||||
//! let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Fq` elements.
|
||||
//! let a_native = Fq::rand(&mut rng);
|
||||
//! let b_native = Fq::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = FqVar::new_witness(r1cs_core::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
//! let b = FqVar::new_witness(r1cs_core::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = FqVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = FqVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let one = FqVar::one();
|
||||
//! let zero = FqVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two = &one + &one + &zero;
|
||||
//! two.enforce_equal(&one.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that the value of &a * &b is correct.
|
||||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! One can also perform standard algebraic operations on `G1Var` and `G2Var`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, mnt4_753::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::mnt4_753::*;
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `G1` elements.
|
||||
//! let a_native = G1Projective::rand(&mut rng);
|
||||
//! let b_native = G1Projective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = G1Var::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = G1Var::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = G1Var::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = G1Var::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! // This returns the identity of `G1`.
|
||||
//! let zero = G1Var::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two_a = &a + &a + &zero;
|
||||
//! two_a.enforce_equal(&a.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! Finally, one can check pairing computations as well:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, PairingEngine, mnt4_753::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::mnt4_753::{self, *};
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate random `G1` and `G2` elements.
|
||||
//! let a_native = G1Projective::rand(&mut rng);
|
||||
//! let b_native = G2Projective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = G1Var::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = G2Var::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = G1Var::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = G2Var::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let pairing_result_native = MNT4_753::pairing(a_native, b_native);
|
||||
//!
|
||||
//! // Prepare `a` and `b` for pairing.
|
||||
//! let a_prep = mnt4_753::PairingVar::prepare_g1(&a)?;
|
||||
//! let b_prep = mnt4_753::PairingVar::prepare_g2(&b)?;
|
||||
//! let pairing_result = mnt4_753::PairingVar::pairing(a_prep, b_prep)?;
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!(pairing_result.value()?, pairing_result_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! let a_prep_const = mnt4_753::PairingVar::prepare_g1(&a_const)?;
|
||||
//! let b_prep_const = mnt4_753::PairingVar::prepare_g2(&b_const)?;
|
||||
//! let pairing_result_const = mnt4_753::PairingVar::pairing(a_prep_const, b_prep_const)?;
|
||||
//! println!("Done here 3");
|
||||
//!
|
||||
//! pairing_result.enforce_equal(&pairing_result_const)?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
|
||||
mod curves;
|
||||
mod fields;
|
||||
mod pairing;
|
||||
|
||||
@@ -1,3 +1,153 @@
|
||||
//! This module implements the R1CS equivalent of `algebra::mnt6_298`.
|
||||
//!
|
||||
//! It implements field variables for `algebra::mnt6_298::{Fq, Fq3, Fq6}`,
|
||||
//! group variables for `algebra::mnt6_298::{G1, G2}`, and implements constraint
|
||||
//! generation for computing `MNT6_298::pairing`.
|
||||
//!
|
||||
//! The field underlying these constraints is `algebra::mnt6_298::Fq`.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! One can perform standard algebraic operations on `FqVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! use algebra::{UniformRand, mnt6_298::*};
|
||||
//! use r1cs_core::*;
|
||||
//! use r1cs_std::prelude::*;
|
||||
//! use r1cs_std::mnt6_298::*;
|
||||
//!
|
||||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! // This rng is just for test purposes; do not use it
|
||||
//! // in real applications.
|
||||
//! let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Fq` elements.
|
||||
//! let a_native = Fq::rand(&mut rng);
|
||||
//! let b_native = Fq::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = FqVar::new_witness(r1cs_core::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
//! let b = FqVar::new_witness(r1cs_core::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = FqVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = FqVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let one = FqVar::one();
|
||||
//! let zero = FqVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two = &one + &one + &zero;
|
||||
//! two.enforce_equal(&one.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that the value of &a * &b is correct.
|
||||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! One can also perform standard algebraic operations on `G1Var` and `G2Var`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, mnt6_298::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::mnt6_298::*;
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `G1` elements.
|
||||
//! let a_native = G1Projective::rand(&mut rng);
|
||||
//! let b_native = G1Projective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = G1Var::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = G1Var::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = G1Var::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = G1Var::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! // This returns the identity of `G1`.
|
||||
//! let zero = G1Var::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two_a = &a + &a + &zero;
|
||||
//! two_a.enforce_equal(&a.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! Finally, one can check pairing computations as well:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, PairingEngine, mnt6_298::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::mnt6_298::{self, *};
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate random `G1` and `G2` elements.
|
||||
//! let a_native = G1Projective::rand(&mut rng);
|
||||
//! let b_native = G2Projective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = G1Var::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = G2Var::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = G1Var::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = G2Var::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let pairing_result_native = MNT6_298::pairing(a_native, b_native);
|
||||
//!
|
||||
//! // Prepare `a` and `b` for pairing.
|
||||
//! let a_prep = mnt6_298::PairingVar::prepare_g1(&a)?;
|
||||
//! let b_prep = mnt6_298::PairingVar::prepare_g2(&b)?;
|
||||
//! let pairing_result = mnt6_298::PairingVar::pairing(a_prep, b_prep)?;
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!(pairing_result.value()?, pairing_result_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! let a_prep_const = mnt6_298::PairingVar::prepare_g1(&a_const)?;
|
||||
//! let b_prep_const = mnt6_298::PairingVar::prepare_g2(&b_const)?;
|
||||
//! let pairing_result_const = mnt6_298::PairingVar::pairing(a_prep_const, b_prep_const)?;
|
||||
//! println!("Done here 3");
|
||||
//!
|
||||
//! pairing_result.enforce_equal(&pairing_result_const)?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
|
||||
mod curves;
|
||||
mod fields;
|
||||
mod pairing;
|
||||
|
||||
@@ -1,3 +1,153 @@
|
||||
//! This module implements the R1CS equivalent of `algebra::mnt6_753`.
|
||||
//!
|
||||
//! It implements field variables for `algebra::mnt6_753::{Fq, Fq3, Fq6}`,
|
||||
//! group variables for `algebra::mnt6_753::{G1, G2}`, and implements constraint
|
||||
//! generation for computing `MNT6_753::pairing`.
|
||||
//!
|
||||
//! The field underlying these constraints is `algebra::mnt6_753::Fq`.
|
||||
//!
|
||||
//! # Examples
|
||||
//!
|
||||
//! One can perform standard algebraic operations on `FqVar`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! use algebra::{UniformRand, mnt6_753::*};
|
||||
//! use r1cs_core::*;
|
||||
//! use r1cs_std::prelude::*;
|
||||
//! use r1cs_std::mnt6_753::*;
|
||||
//!
|
||||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! // This rng is just for test purposes; do not use it
|
||||
//! // in real applications.
|
||||
//! let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `Fq` elements.
|
||||
//! let a_native = Fq::rand(&mut rng);
|
||||
//! let b_native = Fq::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = FqVar::new_witness(r1cs_core::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
//! let b = FqVar::new_witness(r1cs_core::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = FqVar::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = FqVar::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let one = FqVar::one();
|
||||
//! let zero = FqVar::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two = &one + &one + &zero;
|
||||
//! two.enforce_equal(&one.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that the value of &a * &b is correct.
|
||||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! One can also perform standard algebraic operations on `G1Var` and `G2Var`:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, mnt6_753::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::mnt6_753::*;
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate some random `G1` elements.
|
||||
//! let a_native = G1Projective::rand(&mut rng);
|
||||
//! let b_native = G1Projective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = G1Var::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = G1Var::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = G1Var::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = G1Var::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! // This returns the identity of `G1`.
|
||||
//! let zero = G1Var::zero();
|
||||
//!
|
||||
//! // Sanity check one + one = two
|
||||
//! let two_a = &a + &a + &zero;
|
||||
//! two_a.enforce_equal(&a.double()?)?;
|
||||
//!
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! Finally, one can check pairing computations as well:
|
||||
//!
|
||||
//! ```
|
||||
//! # fn main() -> Result<(), r1cs_core::SynthesisError> {
|
||||
//! # use algebra::{UniformRand, PairingEngine, mnt6_753::*};
|
||||
//! # use r1cs_core::*;
|
||||
//! # use r1cs_std::prelude::*;
|
||||
//! # use r1cs_std::mnt6_753::{self, *};
|
||||
//!
|
||||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
//! # let mut rng = algebra::test_rng();
|
||||
//!
|
||||
//! // Generate random `G1` and `G2` elements.
|
||||
//! let a_native = G1Projective::rand(&mut rng);
|
||||
//! let b_native = G2Projective::rand(&mut rng);
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
//! let a = G1Var::new_witness(r1cs_core::ns!(cs, "a"), || Ok(a_native))?;
|
||||
//! let b = G2Var::new_witness(r1cs_core::ns!(cs, "b"), || Ok(b_native))?;
|
||||
//!
|
||||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
//! // constraints or variables.
|
||||
//! let a_const = G1Var::new_constant(r1cs_core::ns!(cs, "a_as_constant"), a_native)?;
|
||||
//! let b_const = G2Var::new_constant(r1cs_core::ns!(cs, "b_as_constant"), b_native)?;
|
||||
//!
|
||||
//! let pairing_result_native = MNT6_753::pairing(a_native, b_native);
|
||||
//!
|
||||
//! // Prepare `a` and `b` for pairing.
|
||||
//! let a_prep = mnt6_753::PairingVar::prepare_g1(&a)?;
|
||||
//! let b_prep = mnt6_753::PairingVar::prepare_g2(&b)?;
|
||||
//! let pairing_result = mnt6_753::PairingVar::pairing(a_prep, b_prep)?;
|
||||
//!
|
||||
//! // Check that the value of &a + &b is correct.
|
||||
//! assert_eq!(pairing_result.value()?, pairing_result_native);
|
||||
//!
|
||||
//! // Check that operations on variables and constants are equivalent.
|
||||
//! let a_prep_const = mnt6_753::PairingVar::prepare_g1(&a_const)?;
|
||||
//! let b_prep_const = mnt6_753::PairingVar::prepare_g2(&b_const)?;
|
||||
//! let pairing_result_const = mnt6_753::PairingVar::pairing(a_prep_const, b_prep_const)?;
|
||||
//! println!("Done here 3");
|
||||
//!
|
||||
//! pairing_result.enforce_equal(&pairing_result_const)?;
|
||||
//! assert!(cs.is_satisfied()?);
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
|
||||
mod curves;
|
||||
mod fields;
|
||||
mod pairing;
|
||||
|
||||
@@ -1,50 +1,38 @@
|
||||
/// This module implements the R1CS equivalent of `algebra::bls12_377`.
|
||||
#[cfg(feature = "bls12_377")]
|
||||
pub mod bls12_377;
|
||||
|
||||
/// This module implements the R1CS equivalent of `algebra::ed_on_bls12_377`.
|
||||
#[cfg(feature = "ed_on_bls12_377")]
|
||||
pub mod ed_on_bls12_377;
|
||||
|
||||
/// This module implements the R1CS equivalent of `algebra::ed_on_cp6_782`.
|
||||
#[cfg(feature = "ed_on_cp6_782")]
|
||||
pub mod ed_on_cp6_782;
|
||||
|
||||
#[cfg(all(not(feature = "ed_on_cp6_782"), feature = "ed_on_bw6_761"))]
|
||||
pub(crate) mod ed_on_cp6_782;
|
||||
|
||||
/// This module implements the R1CS equivalent of `algebra::ed_on_bw6_761`.
|
||||
#[cfg(feature = "ed_on_bw6_761")]
|
||||
pub mod ed_on_bw6_761;
|
||||
|
||||
/// This module implements the R1CS equivalent of `algebra::ed_on_bn254`.
|
||||
#[cfg(feature = "ed_on_bn254")]
|
||||
pub mod ed_on_bn254;
|
||||
|
||||
/// This module implements the R1CS equivalent of `algebra::ed_on_bls12_381`.
|
||||
#[cfg(feature = "ed_on_bls12_381")]
|
||||
pub mod ed_on_bls12_381;
|
||||
|
||||
/// This module implements the R1CS equivalent of `algebra::ed_on_mnt4_298`.
|
||||
#[cfg(feature = "ed_on_mnt4_298")]
|
||||
pub mod ed_on_mnt4_298;
|
||||
|
||||
/// This module implements the R1CS equivalent of `algebra::ed_on_mnt4_753`.
|
||||
#[cfg(feature = "ed_on_mnt4_753")]
|
||||
pub mod ed_on_mnt4_753;
|
||||
|
||||
/// This module implements the R1CS equivalent of `algebra::mnt4_298`.
|
||||
#[cfg(feature = "mnt4_298")]
|
||||
pub mod mnt4_298;
|
||||
|
||||
/// This module implements the R1CS equivalent of `algebra::mnt4_753`.
|
||||
#[cfg(feature = "mnt4_753")]
|
||||
pub mod mnt4_753;
|
||||
|
||||
/// This module implements the R1CS equivalent of `algebra::mnt6_298`.
|
||||
#[cfg(feature = "mnt6_298")]
|
||||
pub mod mnt6_298;
|
||||
|
||||
/// This module implements the R1CS equivalent of `algebra::mnt6_753`.
|
||||
#[cfg(feature = "mnt6_753")]
|
||||
pub mod mnt6_753;
|
||||
|
||||
Reference in New Issue
Block a user