add point compress&decompress, add modsqrt with Tonelli-Shanks algorithm

This commit is contained in:
2019-08-24 16:15:05 +02:00
parent a2122dadce
commit eb42f48c65
4 changed files with 332 additions and 61 deletions

View File

@@ -1,3 +1,5 @@
#[macro_use]
extern crate arrayref;
extern crate generic_array;
extern crate mimc_rs;
extern crate num;
@@ -8,9 +10,7 @@ extern crate rand;
use blake2::{Blake2b, Digest};
use mimc_rs::Mimc7;
use num_bigint::RandBigInt;
use num_bigint::{BigInt, Sign, ToBigInt};
use num_bigint::{BigInt, RandBigInt, Sign, ToBigInt};
use num_traits::{One, Zero};
use generic_array::GenericArray;
@@ -22,11 +22,56 @@ pub struct Point {
pub x: BigInt,
pub y: BigInt,
}
pub struct Signature {
r_b8: Point,
s: BigInt,
}
pub struct PrivateKey {
bbjj: Babyjubjub,
key: BigInt,
}
impl PrivateKey {
pub fn public(&self) -> Point {
// https://tools.ietf.org/html/rfc8032#section-5.1.5
let pk = &self.bbjj.mul_scalar(self.bbjj.b8.clone(), self.key.clone());
pk.clone()
}
pub fn sign(&self, msg: BigInt) -> Signature {
// https://tools.ietf.org/html/rfc8032#section-5.1.6
let mut hasher = Blake2b::new();
let (_, sk_bytes) = self.key.to_bytes_be();
hasher.input(sk_bytes);
let mut h = hasher.result(); // h: hash(sk)
// s: h[32:64]
let s = GenericArray::<u8, generic_array::typenum::U32>::from_mut_slice(&mut h[32..64]);
let (_, msg_bytes) = msg.to_bytes_be();
let r_bytes = utils::concatenate_arrays(s, &msg_bytes);
let mut r = BigInt::from_bytes_be(Sign::Plus, &r_bytes[..]);
r = utils::modulus(&r, &self.bbjj.sub_order);
let r8: Point = self.bbjj.mul_scalar(self.bbjj.b8.clone(), r.clone());
// let a = &self.sk_to_pk(sk.clone());
let a = &self.public();
let hm_input = vec![r8.x.clone(), r8.y.clone(), a.x.clone(), a.y.clone(), msg];
let mimc7 = Mimc7::new();
let hm = mimc7.hash(hm_input);
let mut s = &self.key << 3;
s = hm * s;
s = r + s;
s = s % &self.bbjj.sub_order;
Signature {
r_b8: r8.clone(),
s: s,
}
}
}
pub struct Babyjubjub {
d: BigInt,
a: BigInt,
@@ -82,17 +127,13 @@ impl Babyjubjub {
let one: BigInt = One::one();
let x_num: BigInt = &p.x * &q.y + &p.y * &q.x;
let x_den: BigInt = &one + &self.d * &p.x * &q.x * &p.y * &q.y;
let x_den_inv = utils::mod_inverse0(&x_den, &self.q);
// let x_den_inv = utils::mod_inverse1(x_den, self.q.clone());
// let x_den_inv = utils::mod_inverse2(x_den, self.q.clone());
let x_den_inv = utils::modinv(&x_den, &self.q);
let x: BigInt = utils::modulus(&(&x_num * &x_den_inv), &self.q);
// y = (y1 * y2 - a * x1 * x2) / (1 - d * x1 * x2 * y1 * y2)
let y_num = &p.y * &q.y - &self.a * &p.x * &q.x;
let y_den = utils::modulus(&(&one - &self.d * &p.x * &q.x * &p.y * &q.y), &self.q);
let y_den_inv = utils::mod_inverse0(&y_den, &self.q);
// let y_den_inv = utils::mod_inverse1(y_den, self.q.clone());
// let y_den_inv = utils::mod_inverse2(y_den, self.q.clone());
let y_den_inv = utils::modinv(&y_den, &self.q);
let y: BigInt = utils::modulus(&(&y_num * &y_den_inv), &self.q);
Point { x: x, y: y }
@@ -122,7 +163,52 @@ impl Babyjubjub {
r
}
pub fn new_key(&self) -> BigInt {
pub fn compress(&self, p: Point) -> [u8; 32] {
let mut r: [u8; 32];
let (_, y_bytes) = p.y.to_bytes_le();
r = *array_ref!(y_bytes, 0, 32);
if &p.x > &(&self.q >> 1) {
r[31] = r[31] | 0x80;
}
r
}
pub fn decompress_point(&self, bb: [u8; 32]) -> Point {
// https://tools.ietf.org/html/rfc8032#section-5.2.3
let mut sign: bool = false;
let mut b = bb.clone();
if b[31] & 0x80 != 0x00 {
sign = true;
b[31] = b[31] & 0x7F;
}
let y: BigInt = BigInt::from_bytes_le(Sign::Plus, &b[..]);
if y >= self.q {
// println!("ERROR0");
}
let one: BigInt = One::one();
// x^2 = (1 - y^2) / (a - d * y^2) (mod p)
let mut x: BigInt = utils::modulus(
&((one - utils::modulus(&(&y * &y), &self.q))
* utils::modinv(
&utils::modulus(
&(&self.a - utils::modulus(&(&self.d * (&y * &y)), &self.q)),
&self.q,
),
&self.q,
)),
&self.q,
);
x = utils::modsqrt(&x, &self.q);
if (sign && x >= Zero::zero()) || (!sign && x < Zero::zero()) {
x = x * -1.to_bigint().unwrap();
}
x = utils::modulus(&x, &self.q);
Point { x: x, y: y }
}
pub fn new_key(&self) -> PrivateKey {
// https://tools.ietf.org/html/rfc8032#section-5.1.5
let mut rng = rand::thread_rng();
let sk_raw = rng.gen_biguint(1024).to_bigint().unwrap();
@@ -138,43 +224,16 @@ impl Babyjubjub {
let sk = BigInt::from_bytes_le(Sign::Plus, &h[..]);
sk
}
pub fn sk_to_pk(&self, sk: BigInt) -> Point {
// https://tools.ietf.org/html/rfc8032#section-5.1.5
// TODO this will be moved into a method of PrivateKey type
let pk = &self.mul_scalar(self.b8.clone(), sk);
pk.clone()
}
pub fn sign(&self, sk: BigInt, msg: BigInt) -> Signature {
// https://tools.ietf.org/html/rfc8032#section-5.1.6
let mut hasher = Blake2b::new();
let (_, sk_bytes) = sk.to_bytes_be();
hasher.input(sk_bytes);
let mut h = hasher.result(); // h: hash(sk)
// s: h[32:64]
let s = GenericArray::<u8, generic_array::typenum::U32>::from_mut_slice(&mut h[32..64]);
let (_, msg_bytes) = msg.to_bytes_be();
let r_bytes = utils::concatenate_arrays(s, &msg_bytes);
let mut r = BigInt::from_bytes_be(Sign::Plus, &r_bytes[..]);
r = utils::modulus(&r, &self.sub_order);
let r8: Point = self.mul_scalar(self.b8.clone(), r.clone());
let a = &self.sk_to_pk(sk.clone());
let hm_input = vec![r8.x.clone(), r8.y.clone(), a.x.clone(), a.y.clone(), msg];
let mimc7 = Mimc7::new();
let hm = mimc7.hash(hm_input);
let mut s = sk << 3;
s = hm * s;
s = r + s;
s = s % &self.sub_order;
Signature {
r_b8: r8.clone(),
s: s,
let bbjj_new = Babyjubjub {
d: self.d.clone(),
a: self.a.clone(),
q: self.q.clone(),
b8: self.b8.clone(),
sub_order: self.sub_order.clone(),
};
PrivateKey {
bbjj: bbjj_new,
key: sk,
}
}
@@ -200,6 +259,8 @@ impl Babyjubjub {
#[cfg(test)]
mod tests {
use super::*;
extern crate rustc_hex;
use rustc_hex::ToHex;
#[test]
fn test_add_same_point() {
@@ -321,12 +382,48 @@ mod tests {
}
#[test]
fn test_new_key_sign_verify() {
fn test_point_compress_decompress() {
let bbjj = Babyjubjub::new();
let p: Point = Point {
x: BigInt::parse_bytes(
b"17777552123799933955779906779655732241715742912184938656739573121738514868268",
10,
)
.unwrap(),
y: BigInt::parse_bytes(
b"2626589144620713026669568689430873010625803728049924121243784502389097019475",
10,
)
.unwrap(),
};
let p_comp = bbjj.compress(p.clone());
assert_eq!(
p_comp[..].to_hex(),
"53b81ed5bffe9545b54016234682e7b2f699bd42a5e9eae27ff4051bc698ce85"
);
let p2 = bbjj.decompress_point(p_comp);
assert_eq!(p.x, p2.x);
assert_eq!(p.y, p2.y);
}
#[test]
fn test_new_key_sign_verify0() {
let bbjj = Babyjubjub::new();
let sk = bbjj.new_key();
let pk = bbjj.sk_to_pk(sk.clone());
let pk = sk.public();
let msg = 5.to_bigint().unwrap();
let sig = bbjj.sign(sk, msg.clone());
let sig = sk.sign(msg.clone());
let v = bbjj.verify(pk, sig, msg);
assert_eq!(v, true);
}
#[test]
fn test_new_key_sign_verify1() {
let bbjj = Babyjubjub::new();
let sk = bbjj.new_key();
let pk = sk.public();
let msg = BigInt::parse_bytes(b"123456789012345678901234567890", 10).unwrap();
let sig = sk.sign(msg.clone());
let v = bbjj.verify(pk, sig, msg);
assert_eq!(v, true);
}

View File

@@ -2,14 +2,14 @@ extern crate num;
extern crate num_bigint;
extern crate num_traits;
use num_bigint::BigInt;
use num_bigint::{BigInt, ToBigInt};
use num_traits::{One, Zero};
pub fn modulus(a: &BigInt, m: &BigInt) -> BigInt {
((a % m) + m) % m
}
pub fn mod_inverse0(a: &BigInt, q: &BigInt) -> BigInt {
pub fn modinv(a: &BigInt, q: &BigInt) -> BigInt {
let mut mn = (q.clone(), a.clone());
let mut xy: (BigInt, BigInt) = (Zero::zero(), One::one());
@@ -26,13 +26,13 @@ pub fn mod_inverse0(a: &BigInt, q: &BigInt) -> BigInt {
}
/*
pub fn mod_inverse1(a0: BigInt, m0: BigInt) -> BigInt {
if m0 == One::one() {
pub fn modinv_v2(a0: &BigInt, m0: &BigInt) -> BigInt {
if m0 == &One::one() {
return One::one();
}
let (mut a, mut m, mut x0, mut inv): (BigInt, BigInt, BigInt, BigInt) =
(a0, m0.clone(), Zero::zero(), One::one());
(a0.clone(), m0.clone(), Zero::zero(), One::one());
while a > One::one() {
inv = inv - (&a / m.clone()) * x0.clone();
@@ -47,9 +47,9 @@ pub fn mod_inverse1(a0: BigInt, m0: BigInt) -> BigInt {
inv
}
pub fn mod_inverse2(a: BigInt, q: BigInt) -> BigInt {
let mut aa: BigInt = a;
let mut qq: BigInt = q;
pub fn modinv_v3(a: &BigInt, q: &BigInt) -> BigInt {
let mut aa: BigInt = a.clone();
let mut qq: BigInt = q.clone();
if qq < Zero::zero() {
qq = -qq;
}
@@ -68,12 +68,165 @@ pub fn mod_inverse2(a: BigInt, q: BigInt) -> BigInt {
}
res
}
pub fn modinv_v4(x: &BigInt, q: &BigInt) -> BigInt {
let (gcd, inverse, _) = extended_gcd(x.clone(), q.clone());
let one: BigInt = One::one();
if gcd == one {
modulus(&inverse, q)
} else {
panic!("error: gcd!=one")
}
}
pub fn extended_gcd(a: BigInt, b: BigInt) -> (BigInt, BigInt, BigInt) {
let (mut s, mut old_s) = (BigInt::zero(), BigInt::one());
let (mut t, mut old_t) = (BigInt::one(), BigInt::zero());
let (mut r, mut old_r) = (b, a);
while r != BigInt::zero() {
let quotient = &old_r / &r;
old_r -= &quotient * &r;
std::mem::swap(&mut old_r, &mut r);
old_s -= &quotient * &s;
std::mem::swap(&mut old_s, &mut s);
old_t -= quotient * &t;
std::mem::swap(&mut old_t, &mut t);
}
let _quotients = (t, s); // == (a, b) / gcd
(old_r, old_s, old_t)
}
*/
pub fn concatenate_arrays<T: Clone>(x: &[T], y: &[T]) -> Vec<T> {
x.iter().chain(y).cloned().collect()
}
pub fn modsqrt(a: &BigInt, q: &BigInt) -> BigInt {
// Tonelli-Shanks Algorithm (https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm)
//
// This implementation is following the Go lang core implementation https://golang.org/src/math/big/int.go?s=23173:23210#L859
// Also described in https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
// -> section 6
let zero: BigInt = Zero::zero();
let one: BigInt = One::one();
if legendre_symbol(&a, q) != 1 {
// not a mod p square
return zero;
} else if a == &zero {
return zero;
} else if q == &2.to_bigint().unwrap() {
return zero;
} else if q % 4.to_bigint().unwrap() == 3.to_bigint().unwrap() {
let r = a.modpow(&((q + one) / 4), &q);
return r;
}
let mut s = q - &one;
let mut e: BigInt = Zero::zero();
while &s % 2 == zero {
s = s >> 1;
e = e + &one;
}
let mut n: BigInt = 2.to_bigint().unwrap();
while legendre_symbol(&n, q) != -1 {
n = &n + &one;
}
let mut y = a.modpow(&((&s + &one) >> 1), q);
let mut b = a.modpow(&s, q);
let mut g = n.modpow(&s, q);
let mut r = e;
loop {
let mut t = b.clone();
let mut m: BigInt = Zero::zero();
while &t != &one {
t = modulus(&(&t * &t), q);
m = m + &one;
}
if m == zero {
return y.clone();
}
t = g.modpow(&(2.to_bigint().unwrap().modpow(&(&r - &m - 1), q)), q);
g = g.modpow(&(2.to_bigint().unwrap().modpow(&(r - &m), q)), q);
y = modulus(&(y * t), q);
b = modulus(&(b * &g), q);
r = m.clone();
}
}
#[allow(dead_code)]
pub fn modsqrt_v2(a: &BigInt, q: &BigInt) -> BigInt {
// Tonelli-Shanks Algorithm (https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm)
//
// This implementation is following this Python implementation by Dusk https://github.com/dusk-network/dusk-zerocaf/blob/master/tools/tonelli.py
let zero: BigInt = Zero::zero();
let one: BigInt = One::one();
if legendre_symbol(&a, q) != 1 {
// not a mod p square
return zero;
} else if a == &zero {
return zero;
} else if q == &2.to_bigint().unwrap() {
return zero;
} else if q % 4.to_bigint().unwrap() == 3.to_bigint().unwrap() {
let r = a.modpow(&((q + one) / 4), &q);
return r;
}
let mut p = q - &one;
let mut s: BigInt = Zero::zero();
while &p % 2.to_bigint().unwrap() == zero {
s = s + &one;
p = p >> 1;
}
let mut z: BigInt = One::one();
while legendre_symbol(&z, q) != -1 {
z = &z + &one;
}
let mut c = z.modpow(&p, q);
let mut x = a.modpow(&((&p + &one) >> 1), q);
let mut t = a.modpow(&p, q);
let mut m = s;
while &t != &one {
let mut i: BigInt = One::one();
let mut e: BigInt = 2.to_bigint().unwrap();
while i < m {
if t.modpow(&e, q) == one {
break;
}
e = e * 2.to_bigint().unwrap();
i = i + &one;
}
let b = c.modpow(&(2.to_bigint().unwrap().modpow(&(&m - &i - 1), q)), q);
x = modulus(&(x * &b), q);
t = modulus(&(t * &b * &b), q);
c = modulus(&(&b * &b), q);
m = i.clone();
}
return x;
}
pub fn legendre_symbol(a: &BigInt, q: &BigInt) -> i32 {
// returns 1 if has a square root modulo q
let one: BigInt = One::one();
let ls: BigInt = a.modpow(&((q - &one) >> 1), &q);
if &(ls) == &(q - one) {
return -1;
}
1
}
#[cfg(test)]
mod tests {
use super::*;
@@ -82,9 +235,29 @@ mod tests {
fn test_mod_inverse() {
let a = BigInt::parse_bytes(b"123456789123456789123456789123456789123456789", 10).unwrap();
let b = BigInt::parse_bytes(b"12345678", 10).unwrap();
assert_eq!(modinv(&a, &b), BigInt::parse_bytes(b"641883", 10).unwrap());
}
#[test]
fn test_sqrtmod() {
let a = BigInt::parse_bytes(
b"6536923810004159332831702809452452174451353762940761092345538667656658715568",
10,
)
.unwrap();
let q = BigInt::parse_bytes(
b"7237005577332262213973186563042994240857116359379907606001950938285454250989",
10,
)
.unwrap();
assert_eq!(
mod_inverse0(&a, &b),
BigInt::parse_bytes(b"641883", 10).unwrap()
(modsqrt(&a, &q)).to_string(),
"5464794816676661649783249706827271879994893912039750480019443499440603127256"
);
assert_eq!(
(modsqrt_v2(&a, &q)).to_string(),
"5464794816676661649783249706827271879994893912039750480019443499440603127256"
);
}
}