mirror of
https://github.com/arnaucube/babyjubjub-ark.git
synced 2026-01-13 17:21:29 +01:00
add point compress&decompress, add modsqrt with Tonelli-Shanks algorithm
This commit is contained in:
@@ -16,3 +16,4 @@ generic-array = "0.13.2"
|
||||
tiny-keccak = "1.5"
|
||||
rustc-hex = "1.0.0"
|
||||
mimc-rs = "0.0.1"
|
||||
arrayref = "0.3.5"
|
||||
|
||||
@@ -4,7 +4,7 @@ BabyJubJub elliptic curve implementation in Rust
|
||||
Uses MiMC7 hash function: https://github.com/arnaucube/mimc-rs
|
||||
|
||||
## Warning
|
||||
Doing this in my free time to get familiar with Rust, do not use in production
|
||||
Doing this in my free time to get familiar with Rust, do not use in production.
|
||||
|
||||
- [x] point addition
|
||||
- [x] point scalar multiplication
|
||||
|
||||
197
src/lib.rs
197
src/lib.rs
@@ -1,3 +1,5 @@
|
||||
#[macro_use]
|
||||
extern crate arrayref;
|
||||
extern crate generic_array;
|
||||
extern crate mimc_rs;
|
||||
extern crate num;
|
||||
@@ -8,9 +10,7 @@ extern crate rand;
|
||||
use blake2::{Blake2b, Digest};
|
||||
use mimc_rs::Mimc7;
|
||||
|
||||
use num_bigint::RandBigInt;
|
||||
|
||||
use num_bigint::{BigInt, Sign, ToBigInt};
|
||||
use num_bigint::{BigInt, RandBigInt, Sign, ToBigInt};
|
||||
use num_traits::{One, Zero};
|
||||
|
||||
use generic_array::GenericArray;
|
||||
@@ -22,11 +22,56 @@ pub struct Point {
|
||||
pub x: BigInt,
|
||||
pub y: BigInt,
|
||||
}
|
||||
|
||||
pub struct Signature {
|
||||
r_b8: Point,
|
||||
s: BigInt,
|
||||
}
|
||||
|
||||
pub struct PrivateKey {
|
||||
bbjj: Babyjubjub,
|
||||
key: BigInt,
|
||||
}
|
||||
|
||||
impl PrivateKey {
|
||||
pub fn public(&self) -> Point {
|
||||
// https://tools.ietf.org/html/rfc8032#section-5.1.5
|
||||
let pk = &self.bbjj.mul_scalar(self.bbjj.b8.clone(), self.key.clone());
|
||||
pk.clone()
|
||||
}
|
||||
|
||||
pub fn sign(&self, msg: BigInt) -> Signature {
|
||||
// https://tools.ietf.org/html/rfc8032#section-5.1.6
|
||||
let mut hasher = Blake2b::new();
|
||||
let (_, sk_bytes) = self.key.to_bytes_be();
|
||||
hasher.input(sk_bytes);
|
||||
let mut h = hasher.result(); // h: hash(sk)
|
||||
// s: h[32:64]
|
||||
let s = GenericArray::<u8, generic_array::typenum::U32>::from_mut_slice(&mut h[32..64]);
|
||||
let (_, msg_bytes) = msg.to_bytes_be();
|
||||
let r_bytes = utils::concatenate_arrays(s, &msg_bytes);
|
||||
let mut r = BigInt::from_bytes_be(Sign::Plus, &r_bytes[..]);
|
||||
r = utils::modulus(&r, &self.bbjj.sub_order);
|
||||
let r8: Point = self.bbjj.mul_scalar(self.bbjj.b8.clone(), r.clone());
|
||||
// let a = &self.sk_to_pk(sk.clone());
|
||||
let a = &self.public();
|
||||
|
||||
let hm_input = vec![r8.x.clone(), r8.y.clone(), a.x.clone(), a.y.clone(), msg];
|
||||
let mimc7 = Mimc7::new();
|
||||
let hm = mimc7.hash(hm_input);
|
||||
|
||||
let mut s = &self.key << 3;
|
||||
s = hm * s;
|
||||
s = r + s;
|
||||
s = s % &self.bbjj.sub_order;
|
||||
|
||||
Signature {
|
||||
r_b8: r8.clone(),
|
||||
s: s,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Babyjubjub {
|
||||
d: BigInt,
|
||||
a: BigInt,
|
||||
@@ -82,17 +127,13 @@ impl Babyjubjub {
|
||||
let one: BigInt = One::one();
|
||||
let x_num: BigInt = &p.x * &q.y + &p.y * &q.x;
|
||||
let x_den: BigInt = &one + &self.d * &p.x * &q.x * &p.y * &q.y;
|
||||
let x_den_inv = utils::mod_inverse0(&x_den, &self.q);
|
||||
// let x_den_inv = utils::mod_inverse1(x_den, self.q.clone());
|
||||
// let x_den_inv = utils::mod_inverse2(x_den, self.q.clone());
|
||||
let x_den_inv = utils::modinv(&x_den, &self.q);
|
||||
let x: BigInt = utils::modulus(&(&x_num * &x_den_inv), &self.q);
|
||||
|
||||
// y = (y1 * y2 - a * x1 * x2) / (1 - d * x1 * x2 * y1 * y2)
|
||||
let y_num = &p.y * &q.y - &self.a * &p.x * &q.x;
|
||||
let y_den = utils::modulus(&(&one - &self.d * &p.x * &q.x * &p.y * &q.y), &self.q);
|
||||
let y_den_inv = utils::mod_inverse0(&y_den, &self.q);
|
||||
// let y_den_inv = utils::mod_inverse1(y_den, self.q.clone());
|
||||
// let y_den_inv = utils::mod_inverse2(y_den, self.q.clone());
|
||||
let y_den_inv = utils::modinv(&y_den, &self.q);
|
||||
let y: BigInt = utils::modulus(&(&y_num * &y_den_inv), &self.q);
|
||||
|
||||
Point { x: x, y: y }
|
||||
@@ -122,7 +163,52 @@ impl Babyjubjub {
|
||||
r
|
||||
}
|
||||
|
||||
pub fn new_key(&self) -> BigInt {
|
||||
pub fn compress(&self, p: Point) -> [u8; 32] {
|
||||
let mut r: [u8; 32];
|
||||
let (_, y_bytes) = p.y.to_bytes_le();
|
||||
r = *array_ref!(y_bytes, 0, 32);
|
||||
if &p.x > &(&self.q >> 1) {
|
||||
r[31] = r[31] | 0x80;
|
||||
}
|
||||
r
|
||||
}
|
||||
|
||||
pub fn decompress_point(&self, bb: [u8; 32]) -> Point {
|
||||
// https://tools.ietf.org/html/rfc8032#section-5.2.3
|
||||
let mut sign: bool = false;
|
||||
let mut b = bb.clone();
|
||||
if b[31] & 0x80 != 0x00 {
|
||||
sign = true;
|
||||
b[31] = b[31] & 0x7F;
|
||||
}
|
||||
let y: BigInt = BigInt::from_bytes_le(Sign::Plus, &b[..]);
|
||||
if y >= self.q {
|
||||
// println!("ERROR0");
|
||||
}
|
||||
let one: BigInt = One::one();
|
||||
|
||||
// x^2 = (1 - y^2) / (a - d * y^2) (mod p)
|
||||
let mut x: BigInt = utils::modulus(
|
||||
&((one - utils::modulus(&(&y * &y), &self.q))
|
||||
* utils::modinv(
|
||||
&utils::modulus(
|
||||
&(&self.a - utils::modulus(&(&self.d * (&y * &y)), &self.q)),
|
||||
&self.q,
|
||||
),
|
||||
&self.q,
|
||||
)),
|
||||
&self.q,
|
||||
);
|
||||
x = utils::modsqrt(&x, &self.q);
|
||||
|
||||
if (sign && x >= Zero::zero()) || (!sign && x < Zero::zero()) {
|
||||
x = x * -1.to_bigint().unwrap();
|
||||
}
|
||||
x = utils::modulus(&x, &self.q);
|
||||
Point { x: x, y: y }
|
||||
}
|
||||
|
||||
pub fn new_key(&self) -> PrivateKey {
|
||||
// https://tools.ietf.org/html/rfc8032#section-5.1.5
|
||||
let mut rng = rand::thread_rng();
|
||||
let sk_raw = rng.gen_biguint(1024).to_bigint().unwrap();
|
||||
@@ -138,43 +224,16 @@ impl Babyjubjub {
|
||||
|
||||
let sk = BigInt::from_bytes_le(Sign::Plus, &h[..]);
|
||||
|
||||
sk
|
||||
}
|
||||
|
||||
pub fn sk_to_pk(&self, sk: BigInt) -> Point {
|
||||
// https://tools.ietf.org/html/rfc8032#section-5.1.5
|
||||
// TODO this will be moved into a method of PrivateKey type
|
||||
let pk = &self.mul_scalar(self.b8.clone(), sk);
|
||||
pk.clone()
|
||||
}
|
||||
|
||||
pub fn sign(&self, sk: BigInt, msg: BigInt) -> Signature {
|
||||
// https://tools.ietf.org/html/rfc8032#section-5.1.6
|
||||
let mut hasher = Blake2b::new();
|
||||
let (_, sk_bytes) = sk.to_bytes_be();
|
||||
hasher.input(sk_bytes);
|
||||
let mut h = hasher.result(); // h: hash(sk)
|
||||
// s: h[32:64]
|
||||
let s = GenericArray::<u8, generic_array::typenum::U32>::from_mut_slice(&mut h[32..64]);
|
||||
let (_, msg_bytes) = msg.to_bytes_be();
|
||||
let r_bytes = utils::concatenate_arrays(s, &msg_bytes);
|
||||
let mut r = BigInt::from_bytes_be(Sign::Plus, &r_bytes[..]);
|
||||
r = utils::modulus(&r, &self.sub_order);
|
||||
let r8: Point = self.mul_scalar(self.b8.clone(), r.clone());
|
||||
let a = &self.sk_to_pk(sk.clone());
|
||||
|
||||
let hm_input = vec![r8.x.clone(), r8.y.clone(), a.x.clone(), a.y.clone(), msg];
|
||||
let mimc7 = Mimc7::new();
|
||||
let hm = mimc7.hash(hm_input);
|
||||
|
||||
let mut s = sk << 3;
|
||||
s = hm * s;
|
||||
s = r + s;
|
||||
s = s % &self.sub_order;
|
||||
|
||||
Signature {
|
||||
r_b8: r8.clone(),
|
||||
s: s,
|
||||
let bbjj_new = Babyjubjub {
|
||||
d: self.d.clone(),
|
||||
a: self.a.clone(),
|
||||
q: self.q.clone(),
|
||||
b8: self.b8.clone(),
|
||||
sub_order: self.sub_order.clone(),
|
||||
};
|
||||
PrivateKey {
|
||||
bbjj: bbjj_new,
|
||||
key: sk,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -200,6 +259,8 @@ impl Babyjubjub {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
extern crate rustc_hex;
|
||||
use rustc_hex::ToHex;
|
||||
|
||||
#[test]
|
||||
fn test_add_same_point() {
|
||||
@@ -321,12 +382,48 @@ mod tests {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_new_key_sign_verify() {
|
||||
fn test_point_compress_decompress() {
|
||||
let bbjj = Babyjubjub::new();
|
||||
let p: Point = Point {
|
||||
x: BigInt::parse_bytes(
|
||||
b"17777552123799933955779906779655732241715742912184938656739573121738514868268",
|
||||
10,
|
||||
)
|
||||
.unwrap(),
|
||||
y: BigInt::parse_bytes(
|
||||
b"2626589144620713026669568689430873010625803728049924121243784502389097019475",
|
||||
10,
|
||||
)
|
||||
.unwrap(),
|
||||
};
|
||||
let p_comp = bbjj.compress(p.clone());
|
||||
assert_eq!(
|
||||
p_comp[..].to_hex(),
|
||||
"53b81ed5bffe9545b54016234682e7b2f699bd42a5e9eae27ff4051bc698ce85"
|
||||
);
|
||||
let p2 = bbjj.decompress_point(p_comp);
|
||||
assert_eq!(p.x, p2.x);
|
||||
assert_eq!(p.y, p2.y);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_new_key_sign_verify0() {
|
||||
let bbjj = Babyjubjub::new();
|
||||
let sk = bbjj.new_key();
|
||||
let pk = bbjj.sk_to_pk(sk.clone());
|
||||
let pk = sk.public();
|
||||
let msg = 5.to_bigint().unwrap();
|
||||
let sig = bbjj.sign(sk, msg.clone());
|
||||
let sig = sk.sign(msg.clone());
|
||||
let v = bbjj.verify(pk, sig, msg);
|
||||
assert_eq!(v, true);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_new_key_sign_verify1() {
|
||||
let bbjj = Babyjubjub::new();
|
||||
let sk = bbjj.new_key();
|
||||
let pk = sk.public();
|
||||
let msg = BigInt::parse_bytes(b"123456789012345678901234567890", 10).unwrap();
|
||||
let sig = sk.sign(msg.clone());
|
||||
let v = bbjj.verify(pk, sig, msg);
|
||||
assert_eq!(v, true);
|
||||
}
|
||||
|
||||
193
src/utils.rs
193
src/utils.rs
@@ -2,14 +2,14 @@ extern crate num;
|
||||
extern crate num_bigint;
|
||||
extern crate num_traits;
|
||||
|
||||
use num_bigint::BigInt;
|
||||
use num_bigint::{BigInt, ToBigInt};
|
||||
use num_traits::{One, Zero};
|
||||
|
||||
pub fn modulus(a: &BigInt, m: &BigInt) -> BigInt {
|
||||
((a % m) + m) % m
|
||||
}
|
||||
|
||||
pub fn mod_inverse0(a: &BigInt, q: &BigInt) -> BigInt {
|
||||
pub fn modinv(a: &BigInt, q: &BigInt) -> BigInt {
|
||||
let mut mn = (q.clone(), a.clone());
|
||||
let mut xy: (BigInt, BigInt) = (Zero::zero(), One::one());
|
||||
|
||||
@@ -26,13 +26,13 @@ pub fn mod_inverse0(a: &BigInt, q: &BigInt) -> BigInt {
|
||||
}
|
||||
|
||||
/*
|
||||
pub fn mod_inverse1(a0: BigInt, m0: BigInt) -> BigInt {
|
||||
if m0 == One::one() {
|
||||
pub fn modinv_v2(a0: &BigInt, m0: &BigInt) -> BigInt {
|
||||
if m0 == &One::one() {
|
||||
return One::one();
|
||||
}
|
||||
|
||||
let (mut a, mut m, mut x0, mut inv): (BigInt, BigInt, BigInt, BigInt) =
|
||||
(a0, m0.clone(), Zero::zero(), One::one());
|
||||
(a0.clone(), m0.clone(), Zero::zero(), One::one());
|
||||
|
||||
while a > One::one() {
|
||||
inv = inv - (&a / m.clone()) * x0.clone();
|
||||
@@ -47,9 +47,9 @@ pub fn mod_inverse1(a0: BigInt, m0: BigInt) -> BigInt {
|
||||
inv
|
||||
}
|
||||
|
||||
pub fn mod_inverse2(a: BigInt, q: BigInt) -> BigInt {
|
||||
let mut aa: BigInt = a;
|
||||
let mut qq: BigInt = q;
|
||||
pub fn modinv_v3(a: &BigInt, q: &BigInt) -> BigInt {
|
||||
let mut aa: BigInt = a.clone();
|
||||
let mut qq: BigInt = q.clone();
|
||||
if qq < Zero::zero() {
|
||||
qq = -qq;
|
||||
}
|
||||
@@ -68,12 +68,165 @@ pub fn mod_inverse2(a: BigInt, q: BigInt) -> BigInt {
|
||||
}
|
||||
res
|
||||
}
|
||||
pub fn modinv_v4(x: &BigInt, q: &BigInt) -> BigInt {
|
||||
let (gcd, inverse, _) = extended_gcd(x.clone(), q.clone());
|
||||
let one: BigInt = One::one();
|
||||
if gcd == one {
|
||||
modulus(&inverse, q)
|
||||
} else {
|
||||
panic!("error: gcd!=one")
|
||||
}
|
||||
}
|
||||
pub fn extended_gcd(a: BigInt, b: BigInt) -> (BigInt, BigInt, BigInt) {
|
||||
let (mut s, mut old_s) = (BigInt::zero(), BigInt::one());
|
||||
let (mut t, mut old_t) = (BigInt::one(), BigInt::zero());
|
||||
let (mut r, mut old_r) = (b, a);
|
||||
|
||||
while r != BigInt::zero() {
|
||||
let quotient = &old_r / &r;
|
||||
old_r -= "ient * &r;
|
||||
std::mem::swap(&mut old_r, &mut r);
|
||||
old_s -= "ient * &s;
|
||||
std::mem::swap(&mut old_s, &mut s);
|
||||
old_t -= quotient * &t;
|
||||
std::mem::swap(&mut old_t, &mut t);
|
||||
}
|
||||
|
||||
let _quotients = (t, s); // == (a, b) / gcd
|
||||
|
||||
(old_r, old_s, old_t)
|
||||
}
|
||||
*/
|
||||
|
||||
pub fn concatenate_arrays<T: Clone>(x: &[T], y: &[T]) -> Vec<T> {
|
||||
x.iter().chain(y).cloned().collect()
|
||||
}
|
||||
|
||||
pub fn modsqrt(a: &BigInt, q: &BigInt) -> BigInt {
|
||||
// Tonelli-Shanks Algorithm (https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm)
|
||||
//
|
||||
// This implementation is following the Go lang core implementation https://golang.org/src/math/big/int.go?s=23173:23210#L859
|
||||
// Also described in https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
|
||||
// -> section 6
|
||||
|
||||
let zero: BigInt = Zero::zero();
|
||||
let one: BigInt = One::one();
|
||||
if legendre_symbol(&a, q) != 1 {
|
||||
// not a mod p square
|
||||
return zero;
|
||||
} else if a == &zero {
|
||||
return zero;
|
||||
} else if q == &2.to_bigint().unwrap() {
|
||||
return zero;
|
||||
} else if q % 4.to_bigint().unwrap() == 3.to_bigint().unwrap() {
|
||||
let r = a.modpow(&((q + one) / 4), &q);
|
||||
return r;
|
||||
}
|
||||
|
||||
let mut s = q - &one;
|
||||
let mut e: BigInt = Zero::zero();
|
||||
while &s % 2 == zero {
|
||||
s = s >> 1;
|
||||
e = e + &one;
|
||||
}
|
||||
|
||||
let mut n: BigInt = 2.to_bigint().unwrap();
|
||||
while legendre_symbol(&n, q) != -1 {
|
||||
n = &n + &one;
|
||||
}
|
||||
|
||||
let mut y = a.modpow(&((&s + &one) >> 1), q);
|
||||
let mut b = a.modpow(&s, q);
|
||||
let mut g = n.modpow(&s, q);
|
||||
let mut r = e;
|
||||
|
||||
loop {
|
||||
let mut t = b.clone();
|
||||
let mut m: BigInt = Zero::zero();
|
||||
while &t != &one {
|
||||
t = modulus(&(&t * &t), q);
|
||||
m = m + &one;
|
||||
}
|
||||
|
||||
if m == zero {
|
||||
return y.clone();
|
||||
}
|
||||
|
||||
t = g.modpow(&(2.to_bigint().unwrap().modpow(&(&r - &m - 1), q)), q);
|
||||
g = g.modpow(&(2.to_bigint().unwrap().modpow(&(r - &m), q)), q);
|
||||
y = modulus(&(y * t), q);
|
||||
b = modulus(&(b * &g), q);
|
||||
r = m.clone();
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn modsqrt_v2(a: &BigInt, q: &BigInt) -> BigInt {
|
||||
// Tonelli-Shanks Algorithm (https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm)
|
||||
//
|
||||
// This implementation is following this Python implementation by Dusk https://github.com/dusk-network/dusk-zerocaf/blob/master/tools/tonelli.py
|
||||
|
||||
let zero: BigInt = Zero::zero();
|
||||
let one: BigInt = One::one();
|
||||
if legendre_symbol(&a, q) != 1 {
|
||||
// not a mod p square
|
||||
return zero;
|
||||
} else if a == &zero {
|
||||
return zero;
|
||||
} else if q == &2.to_bigint().unwrap() {
|
||||
return zero;
|
||||
} else if q % 4.to_bigint().unwrap() == 3.to_bigint().unwrap() {
|
||||
let r = a.modpow(&((q + one) / 4), &q);
|
||||
return r;
|
||||
}
|
||||
|
||||
let mut p = q - &one;
|
||||
let mut s: BigInt = Zero::zero();
|
||||
while &p % 2.to_bigint().unwrap() == zero {
|
||||
s = s + &one;
|
||||
p = p >> 1;
|
||||
}
|
||||
|
||||
let mut z: BigInt = One::one();
|
||||
while legendre_symbol(&z, q) != -1 {
|
||||
z = &z + &one;
|
||||
}
|
||||
let mut c = z.modpow(&p, q);
|
||||
|
||||
let mut x = a.modpow(&((&p + &one) >> 1), q);
|
||||
let mut t = a.modpow(&p, q);
|
||||
let mut m = s;
|
||||
|
||||
while &t != &one {
|
||||
let mut i: BigInt = One::one();
|
||||
let mut e: BigInt = 2.to_bigint().unwrap();
|
||||
while i < m {
|
||||
if t.modpow(&e, q) == one {
|
||||
break;
|
||||
}
|
||||
e = e * 2.to_bigint().unwrap();
|
||||
i = i + &one;
|
||||
}
|
||||
|
||||
let b = c.modpow(&(2.to_bigint().unwrap().modpow(&(&m - &i - 1), q)), q);
|
||||
x = modulus(&(x * &b), q);
|
||||
t = modulus(&(t * &b * &b), q);
|
||||
c = modulus(&(&b * &b), q);
|
||||
m = i.clone();
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
pub fn legendre_symbol(a: &BigInt, q: &BigInt) -> i32 {
|
||||
// returns 1 if has a square root modulo q
|
||||
let one: BigInt = One::one();
|
||||
let ls: BigInt = a.modpow(&((q - &one) >> 1), &q);
|
||||
if &(ls) == &(q - one) {
|
||||
return -1;
|
||||
}
|
||||
1
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
@@ -82,9 +235,29 @@ mod tests {
|
||||
fn test_mod_inverse() {
|
||||
let a = BigInt::parse_bytes(b"123456789123456789123456789123456789123456789", 10).unwrap();
|
||||
let b = BigInt::parse_bytes(b"12345678", 10).unwrap();
|
||||
assert_eq!(modinv(&a, &b), BigInt::parse_bytes(b"641883", 10).unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sqrtmod() {
|
||||
let a = BigInt::parse_bytes(
|
||||
b"6536923810004159332831702809452452174451353762940761092345538667656658715568",
|
||||
10,
|
||||
)
|
||||
.unwrap();
|
||||
let q = BigInt::parse_bytes(
|
||||
b"7237005577332262213973186563042994240857116359379907606001950938285454250989",
|
||||
10,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
assert_eq!(
|
||||
mod_inverse0(&a, &b),
|
||||
BigInt::parse_bytes(b"641883", 10).unwrap()
|
||||
(modsqrt(&a, &q)).to_string(),
|
||||
"5464794816676661649783249706827271879994893912039750480019443499440603127256"
|
||||
);
|
||||
assert_eq!(
|
||||
(modsqrt_v2(&a, &q)).to_string(),
|
||||
"5464794816676661649783249706827271879994893912039750480019443499440603127256"
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user