You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

226 lines
12 KiB

<!DOCTYPE html>
<html lang="en">
<head>
<meta name="description" content="In the following notes I've tried to summarize the KZG Commitment scheme with the concepts that helped me to follow the reasoning." />
<meta charset="utf-8">
<title> Notes on KZG polynomial commitments - arnaucube - blog</title>
<meta name="title" content=" Notes on KZG polynomial commitments - arnaucube - blog">
<meta name="description" content="In the following notes I've tried to summarize the KZG Commitment scheme with the concepts that helped me to follow the reasoning.">
<meta property="og:title" content=" Notes on KZG polynomial commitments - arnaucube - blog" />
<meta property="og:description" content="In the following notes I've tried to summarize the KZG Commitment scheme with the concepts that helped me to follow the reasoning." />
<meta property="og:url" content="https://arnaucube.com/blog/kzg-commitments.html" />
<meta property="og:type" content="article" />
<meta property="og:image" content="https://arnaucube.com/blog/" />
<meta name="twitter:title" content=" Notes on KZG polynomial commitments - arnaucube - blog">
<meta name="twitter:description" content="In the following notes I've tried to summarize the KZG Commitment scheme with the concepts that helped me to follow the reasoning.">
<meta name="twitter:image" content="https://arnaucube.com/blog/">
<meta name="twitter:card" content="summary_large_image">
<meta name="author" content="arnaucube">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-EVSTQN3/azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd3yD65VohhpuuCOmLASjC" crossorigin="anonymous">
<link rel="stylesheet" href="css/style.css">
<!-- highlightjs -->
<!-- <link rel="stylesheet" href="js/highlightjs/atom-one-dark.css"> -->
<link rel="stylesheet" href="js/highlightjs/gruvbox-dark.css">
<script src="js/highlightjs/highlight.pack.js"></script>
<!-- katex -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.11/dist/katex.min.css" integrity="sha384-Um5gpz1odJg5Z4HAmzPtgZKdTBHZdw8S29IecapCSB31ligYPhHQZMIlWLYQGVoc" crossorigin="anonymous">
</head>
<body>
<!-- o_gradient_background" -->
<nav id="mainNav" class="navbar navbar-default navbar-fixed-top"
style="height:50px;font-size:130%;">
<div class="container">
<a href="/blog" style="color:#000;">Blog index</a>
<div style="float:right;">
<a href="/" style="color:#000;display:inline-block;">arnaucube.com</a>
<div class="onoffswitch" style="margin:10px;display:inline-block;" title="change theme">
<input onclick="switchTheme()" type="checkbox" name="onoffswitch" class="onoffswitch-checkbox"
id="themeSwitcher">
<label class="onoffswitch-label" for="themeSwitcher"></label>
</div>
</div>
</div>
<img style="height:5px; width:100%; margin-top:8px;" src="img/gradient-line.jpg" />
</nav>
<div class="container" style="margin-top:40px;max-width:800px;">
<h2>Notes on KZG polynomial commitments</h2>
<p><em>2021-08-05</em></p>
<blockquote>
<p><strong>Warning</strong>: I want to state clearly that I&rsquo;m not a mathematician, I&rsquo;m just an amateur on math studying in my free time, and this article is just an attempt to try to sort the notes that I took while reading about the KZG Commitments.</p>
</blockquote>
<p>Few weeks ago I started reading about <a href="https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf">KZG Commitments</a> from the articles written by <a href="https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html">Dankrad Feist</a>, by <a href="https://hackmd.io/@tompocock/Hk2A7BD6U">Tom Walton-Pocock</a> and by <a href="https://alinush.github.io/2020/05/06/kzg-polynomial-commitments.html">Alin Tomescu</a>. I want to thank them, because their articles helped me to understand a bit the concepts. I recommend spending the time reading their articles instead of this current notes.</p>
<div class="row">
<div class="col-md-7">
<br>
In the following notes I've tried to summarize the KZG Commitments scheme with the concepts that helped me to follow the reasoning.
</div>
<div class="col-md-5" style="font-size:90%; padding:10px;border:1px solid #cfcfcf;">
<b>Notation:</b><br>
$[x]_1 = x G \in \mathbb{G}_1\newline
[x]_2 = x H \in \mathbb{G}_2$
<br>Where $\mathbb{G}_1 = \langle G \rangle$ and $\mathbb{G}_2 = \langle H \rangle$.
<br>In other words: $G$ is the generator of $\mathbb{G}_1$, and $H$ is the generator of $\mathbb{G}_2$
</div>
</div>
<h4>Trusted setup</h4>
<p>First of all, we need to generate a <em>Trusted Setup</em> that will be used later in the rest of steps. Here, the concept of <em>Trusted Setup</em> is quite similar to what we are familiar when dealing with other zk protocols such zkSNARKs, but with the advantage that for the <em>KZG Commitments</em> the nature of its <em>Trusted Setup</em> allows to have some kind of &lsquo;global&rsquo; <em>Trusted Setup</em> that can be used for different polynomials.</p>
<p>It should be computed in a <em>Multi-Party Computation</em> (<em>MPC</em>) fashion, and ensuring that at least one of the participants is honest, in order to ensure that the original parameter $\tau$ can not be restored.</p>
<p>The parameters of the <em>Trusted Setup</em> are generated by generating a random $\tau \in \mathbb{F}_p$, and from this parameter we can compute $[\tau^i]_1$ and $[\tau^i]_2$ for $i=0,&hellip;,n-1$:</p>
<p>$$
[\tau^i]_1 = ([\tau^0]_1, [\tau^1]_1, [\tau^2]_1, &hellip;, [\tau^{n-1}]_1)\newline
[\tau^i]_2 = ([\tau^0]_2, [\tau^1]_2, [\tau^2]_2, &hellip;, [\tau^{n-1}]_2)
$$</p>
<p>Which in additive representation is:
$$
(G, \tau G, \tau^2 G, &hellip;, \tau^{n-1} G) \in \mathbb{G}_1\newline
(H, \tau H, \tau^2 H, &hellip;, \tau^{n-1} H) \in \mathbb{G}_2
$$</p>
<p>The &lsquo;intuition&rsquo; about the <em>Trusted Setup</em> is that is like encrypting a secret value ($\tau$) that later will be used in the &lsquo;encrypted&rsquo; form to evaluate the polynomials.</p>
<h4>Commitments</h4>
<p>A commitment to a polynomial $p(x) = \sum^n_{i=0} p_i x^i$ is done by computing</p>
<p>$$c=[p(\tau)]_1$$</p>
<p>which is computed by $c = \sum^{deg(p(x))}_{i=0} [\tau^i] \cdot p_i$.</p>
<p>The prover would send the commitment to the polynomial $c$, and then the verifier would choose a value $z \in \mathbb{F}_p$, where $\mathbb{F}_p$ is the finite field of the polynomial.</p>
<h4>Evalutaion proofs</h4>
<p>To prove an evaluation of the polynomial at the choosen value $z$ such that $p(z)=y$, a quotient polynomial is computed: $q(x) = \frac{p(x)-y}{x-z}$. This polynomial is the proof that $p(z)=y$, as if $q$ exists it means that $p(x)-y$ is divisible by $x-z$, which means that it has a root at $z$, being $p(z)-y=0$.</p>
<p>Then, the evaluation proof is</p>
<p>$$\pi = [q(\tau)]_1$$</p>
<p>which, as when computing $c$, is computed by $\pi=\sum^{deg(q(x))}_{i=0} [\tau^i] \cdot q_i$.</p>
<p>Once computed, the prover would send this evaluation proof $\pi$ to the verifier.</p>
<h4>Verifying an evaluation proof</h4>
<p>In order to verify an evaluation proof, the verifier has the commitment $c=[p(\tau)]_1$, the evaluation $y=p(z)$, and the proof $\pi=[q(\tau)]_1$.</p>
<p>So, the verifier can check the <a href="https://en.wikipedia.org/wiki/Pairing-based_cryptography">pairing</a> evaluation:
$$\hat{e}(\pi, [\tau]_2 - [z]_2) == \hat{e}(c - [y]_1, H)$$</p>
<p>Where $[\tau]_2$ comes from the Trusted Setup, $[z]_2$ is point at which the polynomial is evaluated, and $[y]_1$ is the claimed value p(z). And $\pi$ and $c$ are given by the prover.</p>
<p>We can unroll that last equivalence, and see that:</p>
<p>$$
\hat{e}(\pi, [\tau]_2 - [z]_2) == \hat{e}(c - [y]_1, H)\newline
\Rightarrow \hat{e}([q(\tau)]_1, [\tau-z]_2) == \hat{e}([p(\tau)]_1 - [y]_1, H)\newline
\Rightarrow [q(\tau) \cdot (\tau-z)]_T == [p(\tau) - y]_T
$$</p>
<p>We can see that is the equation $q(x)(x-z)=p(x)-y$, which can be expressed as $q(x) = \frac{p(x) - y}{x-z}$, evaluated at $\tau$ from the <em>trusted setup</em>, which is not known: $q(\tau) = \frac{p(\tau) - y}{\tau-z}$.</p>
<h3>Conclusions</h3>
<p>The content covered in this notes is just a quick overview, but allows us to see the potential of the scheme. One next iteration from what we&rsquo;ve seen is the approach to do batch proofs, which allows us to evaluate at multiple points with a single evaluation proof. This scheme can be used as a <em>vector commitment</em>, using a polynomial where the $p(i) = x_i$ for all values of $x_i$ of the vector, which can be obtained from the $x_i$ values and computing the <a href="https://en.wikipedia.org/wiki/Lagrange_polynomial">Lagrange interpolation</a>. This is quite useful combined with the mentioned batch proofs. The <em>batch proofs</em> logic can be found at the <a href="https://arnaucube.com/blog/kzg-batch-proof.html">blog/kzg-batch-proof</a> notes (kind of the continuation of the current notes).</p>
<p>As a final note, in order to try to digest the notes, I&rsquo;ve did a <em>toy implementation</em> of this scheme at <a href="https://github.com/arnaucube/kzg-commitments-study">https://github.com/arnaucube/kzg-commitments-study</a>. It&rsquo;s quite simple, but contains the logic overviewed in this notes.</p>
</div>
<footer style="text-align:center; margin-top:100px;margin-bottom:50px;">
<div class="container">
<div class="row">
<ul class="list-inline">
<li><a href="https://twitter.com/arnaucube"
style="color:gray;text-decoration:none;"
target="_blank">twitter.com/arnaucube</a>
</li>
<li><a href="https://github.com/arnaucube"
style="color:gray;text-decoration:none;"
target="_blank">github.com/arnaucube</a>
</li>
</ul>
</div>
<div class="row" style="display:inline-block;">
Blog made with <a href="http://github.com/arnaucube/blogo/"
target="_blank" style="color: gray;text-decoration:none;">Blogo</a>
</div>
</div>
</footer>
<script>
</script>
<script src="js/external-links.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.13.11/dist/katex.min.js" integrity="sha384-YNHdsYkH6gMx9y3mRkmcJ2mFUjTd0qNQQvY9VYZgQd7DcN7env35GzlmFaZ23JGp" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.13.11/dist/contrib/auto-render.min.js" integrity="sha384-vZTG03m+2yp6N6BNi5iM4rW4oIwk5DfcNdFfxkk9ZWpDriOkXX8voJBFrAO7MpVl" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
renderMathInElement(document.body, {
displayMode: false,
// customised options
// • auto-render specific keys, e.g.:
delimiters: [
{left: '$$', right: '$$', display: true},
{left: '$', right: '$', display: false},
],
// • rendering keys, e.g.:
throwOnError : true
});
});
///
let theme = localStorage.getItem("theme");
if ((theme === "light-theme")||(theme==null)) {
theme = "light-theme";
document.getElementById("themeSwitcher").checked = false;
} else if (theme === "dark-theme") {
theme = "dark-theme";
document.getElementById("themeSwitcher").checked = true;
}
document.body.className = theme;
localStorage.setItem("theme", theme);
function switchTheme() {
theme = localStorage.getItem("theme");
if (theme === "light-theme") {
theme = "dark-theme";
document.getElementById("themeSwitcher").checked = true;
} else {
theme = "light-theme";
document.getElementById("themeSwitcher").checked = false;
}
document.body.className = theme;
localStorage.setItem("theme", theme);
console.log(theme);
}
</script>
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
</body>
</html>