|
|
package secrets
import ( "crypto/rand" "errors" "math/big" )
const ( bits = 1024 )
// Create calculates the secrets to share from given parameters
// t: number of secrets needed
// n: number of shares
// p: random point
// k: secret to share
func Create(t, n, p, k *big.Int) (result [][]*big.Int, err error) { if k.Cmp(p) > 0 { return nil, errors.New("Error: need k<p. k: " + k.String() + ", p: " + p.String()) } //generate the basePolynomial
var basePolynomial []*big.Int basePolynomial = append(basePolynomial, k) for i := 0; i < int(t.Int64())-1; i++ { randPrime, err := rand.Prime(rand.Reader, bits/2) if err != nil { return result, err } basePolynomial = append(basePolynomial, randPrime) }
//calculate shares, based on the basePolynomial
var shares []*big.Int for i := 1; i < int(n.Int64())+1; i++ { var pResultMod *big.Int pResult := big.NewInt(int64(0)) for x, polElem := range basePolynomial { if x == 0 { pResult = pResult.Add(pResult, polElem) } else { iBigInt := big.NewInt(int64(i)) xBigInt := big.NewInt(int64(x)) iPowed := iBigInt.Exp(iBigInt, xBigInt, nil) currElem := iPowed.Mul(iPowed, polElem) pResult = pResult.Add(pResult, currElem) pResultMod = pResult.Mod(pResult, p) } } shares = append(shares, pResultMod) } //put the share together with his p value
result = packSharesAndI(shares) return result, nil }
func packSharesAndI(sharesString []*big.Int) (r [][]*big.Int) { for i, share := range sharesString { curr := []*big.Int{share, big.NewInt(int64(i + 1))} r = append(r, curr) } return r } func unpackSharesAndI(sharesPacked [][]*big.Int) ([]*big.Int, []*big.Int) { var shares []*big.Int var i []*big.Int for _, share := range sharesPacked { shares = append(shares, share[0]) i = append(i, share[1]) } return shares, i }
// LagrangeInterpolation calculates the secret from given shares
func LagrangeInterpolation(sharesGiven [][]*big.Int, p *big.Int) *big.Int { resultN := big.NewInt(int64(0)) resultD := big.NewInt(int64(0))
//unpack shares
sharesBigInt, sharesIBigInt := unpackSharesAndI(sharesGiven)
for i := 0; i < len(sharesBigInt); i++ { lagrangeNumerator := big.NewInt(int64(1)) lagrangeDenominator := big.NewInt(int64(1)) for j := 0; j < len(sharesBigInt); j++ { if sharesIBigInt[i] != sharesIBigInt[j] { currLagrangeNumerator := sharesIBigInt[j] currLagrangeDenominator := new(big.Int).Sub(sharesIBigInt[j], sharesIBigInt[i]) lagrangeNumerator = new(big.Int).Mul(lagrangeNumerator, currLagrangeNumerator) lagrangeDenominator = new(big.Int).Mul(lagrangeDenominator, currLagrangeDenominator) } } numerator := new(big.Int).Mul(sharesBigInt[i], lagrangeNumerator) quo := new(big.Int).Quo(numerator, lagrangeDenominator) if quo.Int64() != 0 { resultN = resultN.Add(resultN, quo) } else { resultNMULlagrangeDenominator := new(big.Int).Mul(resultN, lagrangeDenominator) resultN = new(big.Int).Add(resultNMULlagrangeDenominator, numerator)
resultD = resultD.Add(resultD, lagrangeDenominator) } }
var modinvMul *big.Int if resultD.Int64() != 0 { modinv := new(big.Int).ModInverse(resultD, p) modinvMul = new(big.Int).Mul(resultN, modinv) } else { modinvMul = resultN } r := new(big.Int).Mod(modinvMul, p) return r }
|