|
|
// Copyright 2017-2018 DERO Project. All rights reserved.
// Use of this source code in any form is governed by RESEARCH license.
// license can be found in the LICENSE file.
// GPG: 0F39 E425 8C65 3947 702A 8234 08B2 0360 A03A 9DE8
//
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package difficulty
import "fmt" import "math/big"
import "github.com/deroproject/derosuite/config" import "github.com/deroproject/derosuite/crypto"
var ( // bigZero is 0 represented as a big.Int. It is defined here to avoid
// the overhead of creating it multiple times.
bigZero = big.NewInt(0)
// bigOne is 1 represented as a big.Int. It is defined here to avoid
// the overhead of creating it multiple times.
bigOne = big.NewInt(1)
// oneLsh256 is 1 shifted left 256 bits. It is defined here to avoid
// the overhead of creating it multiple times.
oneLsh256 = new(big.Int).Lsh(bigOne, 256)
// enabling this will simulation mode with hard coded difficulty set to 1
// the variable is knowingly not exported, so no one can tinker with it
simulation = false // simulation mode is disabled
)
// HashToBig converts a PoW has into a big.Int that can be used to
// perform math comparisons.
func HashToBig(buf crypto.Hash) *big.Int { // A Hash is in little-endian, but the big package wants the bytes in
// big-endian, so reverse them.
blen := len(buf) // its hardcoded 32 bytes, so why do len but lets do it
for i := 0; i < blen/2; i++ { buf[i], buf[blen-1-i] = buf[blen-1-i], buf[i] }
return new(big.Int).SetBytes(buf[:]) }
// this function calculates the difficulty in big num form
func ConvertDifficultyToBig(difficultyi uint64) *big.Int { if difficultyi == 0 { panic("difficulty can never be zero") } // (1 << 256) / (difficultyNum )
difficulty := new(big.Int).SetUint64(difficultyi) denominator := new(big.Int).Add(difficulty, bigZero) // above 2 lines can be merged
return new(big.Int).Div(oneLsh256, denominator) }
// this function check whether the pow hash meets difficulty criteria
func CheckPowHash(pow_hash crypto.Hash, difficulty uint64) bool { big_difficulty := ConvertDifficultyToBig(difficulty) big_pow_hash := HashToBig(pow_hash)
if big_pow_hash.Cmp(big_difficulty) <= 0 { // if work_pow is less than difficulty
return true } return false }
/* this function calculates difficulty on the basis of previous timestamps and cumulative_difficulty */ func Next_Difficulty(timestamps []uint64, cumulative_difficulty []uint64, target_seconds uint64) (difficulty uint64) {
difficulty = 1 // default difficulty is 1 // for genesis block
if simulation == true { // simulation mode has difficulty set to 1
return 1 }
if len(timestamps) > config.DIFFICULTY_BLOCKS_COUNT_V2 { panic("More timestamps provided than required") } if len(timestamps) != len(cumulative_difficulty) { panic("Number of timestamps != Number of cumulative_difficulty") }
if len(timestamps) <= 1 { return difficulty // return 1
}
length := uint64(len(timestamps))
weighted_timespans := uint64(0) for i := uint64(1); i < length; i++ { timespan := uint64(0) if timestamps[i-1] >= timestamps[i] { timespan = 1 } else { timespan = timestamps[i] - timestamps[i-1] } if timespan > (10 * target_seconds) { timespan = 10 * target_seconds } weighted_timespans += i * timespan }
minimum_timespan := (target_seconds * length) / 2 if weighted_timespans < minimum_timespan { // fix startup weirdness
weighted_timespans = minimum_timespan }
total_work := cumulative_difficulty[length-1] - cumulative_difficulty[0]
// convert input for 128 bit multiply
var big_total_work, big_target, big_result big.Int big_total_work.SetUint64(total_work)
target := (((length + 1) / 2) * target_seconds * 3) / 2 big_target.SetUint64(target)
big_result.Mul(&big_total_work, &big_target)
if big_result.IsUint64() { if big_result.Uint64() > 0x000fffffffffffff { // this will give us atleast 1 year to fix the difficulty algorithm
fmt.Printf("Total work per target_time will soon cross 2^64, please fix the difficulty algorithm\n") } difficulty = big_result.Uint64() / weighted_timespans } else { panic("Total work per target_time crossing 2^64 , please fix the above") }
return difficulty }
|