mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-23 20:23:54 +01:00
(TFHE): add TLWE encryption & decryption
This commit is contained in:
@@ -3,7 +3,8 @@ members = [
|
|||||||
"arith",
|
"arith",
|
||||||
"gfhe",
|
"gfhe",
|
||||||
"bfv",
|
"bfv",
|
||||||
"ckks"
|
"ckks",
|
||||||
|
"tfhe"
|
||||||
]
|
]
|
||||||
|
|
||||||
resolver = "2"
|
resolver = "2"
|
||||||
|
|||||||
@@ -1,9 +1,10 @@
|
|||||||
# fhe-study
|
# fhe-study
|
||||||
Implementations from scratch done while studying some FHE papers; do not use in production.
|
Implementations from scratch done while studying some FHE papers; do not use in production.
|
||||||
|
|
||||||
- `arith`: contains $\mathbb{Z}_q$, $R_q=\mathbb{Z}_q[X]/(X^N+1)$ and $R=\mathbb{Z}[X]/(X^N+1)$ arithmetic implementations, together with the NTT implementation.
|
- `arith`: contains $\mathbb{Z}_q$, $R_q=\mathbb{Z}_q[X]/(X^N+1)$, $R=\mathbb{Z}[X]/(X^N+1)$, $\mathbb{T}_{Q}[X]/(X^N +1)$ arithmetic implementations, together with the NTT implementation.
|
||||||
- `gfhe`: (gfhe=generalized-fhe) contains the structs and logic for RLWE, GLWE, GLev, GGSW, RGSW cryptosystems, and modulus switching and key switching methods, which can be used by concrete FHE schemes.
|
- `gfhe`: (gfhe=generalized-fhe) contains the structs and logic for RLWE, GLWE, GLev, GGSW, RGSW cryptosystems, and modulus switching and key switching methods, which can be used by concrete FHE schemes.
|
||||||
- `bfv`: https://eprint.iacr.org/2012/144.pdf scheme implementation
|
- `bfv`: https://eprint.iacr.org/2012/144.pdf scheme implementation
|
||||||
- `ckks`: https://eprint.iacr.org/2016/421.pdf scheme implementation
|
- `ckks`: https://eprint.iacr.org/2016/421.pdf scheme implementation
|
||||||
|
- `tfhe`: https://eprint.iacr.org/2018/421.pdf scheme implementation
|
||||||
|
|
||||||
`cargo test --release`
|
`cargo test --release`
|
||||||
|
|||||||
@@ -30,4 +30,10 @@ pub trait Ring:
|
|||||||
fn from_vec(coeffs: Vec<Self::C>) -> Self;
|
fn from_vec(coeffs: Vec<Self::C>) -> Self;
|
||||||
|
|
||||||
fn decompose(&self, beta: u32, l: u32) -> Vec<Self>;
|
fn decompose(&self, beta: u32, l: u32) -> Vec<Self>;
|
||||||
|
|
||||||
|
/// returns [ [(num/den) * self].round() ] mod q
|
||||||
|
/// ie. performs the multiplication and division over f64, and then it
|
||||||
|
/// rounds the result, only applying the mod Q (if the ring is mod Q) at the
|
||||||
|
/// end.
|
||||||
|
fn mul_div_round(&self, num: u64, den: u64) -> Self;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -43,6 +43,19 @@ impl<const N: usize> Ring for R<N> {
|
|||||||
unimplemented!();
|
unimplemented!();
|
||||||
// array::from_fn(|i| self.coeffs[i].decompose(beta, l))
|
// array::from_fn(|i| self.coeffs[i].decompose(beta, l))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// performs the multiplication and division over f64, and then it rounds the
|
||||||
|
// result, only applying the mod Q at the end
|
||||||
|
fn mul_div_round(&self, num: u64, den: u64) -> Self {
|
||||||
|
unimplemented!()
|
||||||
|
// fn mul_div_round<const Q: u64>(&self, num: u64, den: u64) -> crate::Rq<Q, N> {
|
||||||
|
// let r: Vec<f64> = self
|
||||||
|
// .coeffs()
|
||||||
|
// .iter()
|
||||||
|
// .map(|e| ((num as f64 * *e as f64) / den as f64).round())
|
||||||
|
// .collect();
|
||||||
|
// crate::Rq::<Q, N>::from_vec_f64(r)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<const Q: u64, const N: usize> From<crate::ring_nq::Rq<Q, N>> for R<N> {
|
impl<const Q: u64, const N: usize> From<crate::ring_nq::Rq<Q, N>> for R<N> {
|
||||||
@@ -74,16 +87,6 @@ impl<const N: usize> R<N> {
|
|||||||
pub fn mul_by_i64(&self, s: i64) -> Self {
|
pub fn mul_by_i64(&self, s: i64) -> Self {
|
||||||
Self(array::from_fn(|i| self.0[i] * s))
|
Self(array::from_fn(|i| self.0[i] * s))
|
||||||
}
|
}
|
||||||
// performs the multiplication and division over f64, and then it rounds the
|
|
||||||
// result, only applying the mod Q at the end
|
|
||||||
pub fn mul_div_round<const Q: u64>(&self, num: u64, den: u64) -> crate::Rq<Q, N> {
|
|
||||||
let r: Vec<f64> = self
|
|
||||||
.coeffs()
|
|
||||||
.iter()
|
|
||||||
.map(|e| ((num as f64 * *e as f64) / den as f64).round())
|
|
||||||
.collect();
|
|
||||||
crate::Rq::<Q, N>::from_vec_f64(r)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn infinity_norm(&self) -> u64 {
|
pub fn infinity_norm(&self) -> u64 {
|
||||||
self.coeffs()
|
self.coeffs()
|
||||||
|
|||||||
@@ -70,6 +70,18 @@ impl<const Q: u64, const N: usize> Ring for Rq<Q, N> {
|
|||||||
// convert it to Rq<Q,N>
|
// convert it to Rq<Q,N>
|
||||||
r.iter().map(|a_i| Self::from_vec(a_i.clone())).collect()
|
r.iter().map(|a_i| Self::from_vec(a_i.clone())).collect()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// returns [ [(num/den) * self].round() ] mod q
|
||||||
|
// ie. performs the multiplication and division over f64, and then it rounds the
|
||||||
|
// result, only applying the mod Q at the end
|
||||||
|
fn mul_div_round(&self, num: u64, den: u64) -> Self {
|
||||||
|
let r: Vec<f64> = self
|
||||||
|
.coeffs()
|
||||||
|
.iter()
|
||||||
|
.map(|e| ((num as f64 * e.0 as f64) / den as f64).round())
|
||||||
|
.collect();
|
||||||
|
Rq::<Q, N>::from_vec_f64(r)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<const Q: u64, const N: usize> From<crate::ring_n::R<N>> for Rq<Q, N> {
|
impl<const Q: u64, const N: usize> From<crate::ring_n::R<N>> for Rq<Q, N> {
|
||||||
@@ -231,17 +243,6 @@ impl<const Q: u64, const N: usize> Rq<Q, N> {
|
|||||||
.collect();
|
.collect();
|
||||||
Rq::<Q, N>::from_vec_f64(r)
|
Rq::<Q, N>::from_vec_f64(r)
|
||||||
}
|
}
|
||||||
// returns [ [(num/den) * self].round() ] mod q
|
|
||||||
// ie. performs the multiplication and division over f64, and then it rounds the
|
|
||||||
// result, only applying the mod Q at the end
|
|
||||||
pub fn mul_div_round(&self, num: u64, den: u64) -> Self {
|
|
||||||
let r: Vec<f64> = self
|
|
||||||
.coeffs()
|
|
||||||
.iter()
|
|
||||||
.map(|e| ((num as f64 * e.0 as f64) / den as f64).round())
|
|
||||||
.collect();
|
|
||||||
Rq::<Q, N>::from_vec_f64(r)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||||
// TODO simplify
|
// TODO simplify
|
||||||
|
|||||||
@@ -49,6 +49,18 @@ impl<const N: usize> Ring for Tn<N> {
|
|||||||
// convert it to Tn<N>
|
// convert it to Tn<N>
|
||||||
r.iter().map(|a_i| Self::from_vec(a_i.clone())).collect()
|
r.iter().map(|a_i| Self::from_vec(a_i.clone())).collect()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// returns [ [(num/den) * self].round() ] mod q
|
||||||
|
/// ie. performs the multiplication and division over f64, and then it rounds the
|
||||||
|
/// result, only applying the mod Q at the end
|
||||||
|
fn mul_div_round(&self, num: u64, den: u64) -> Self {
|
||||||
|
let r: Vec<T64> = self
|
||||||
|
.coeffs()
|
||||||
|
.iter()
|
||||||
|
.map(|e| T64(((num as f64 * e.0 as f64) / den as f64).round() as u64))
|
||||||
|
.collect();
|
||||||
|
Self::from_vec(r)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// apply mod (X^N+1)
|
// apply mod (X^N+1)
|
||||||
|
|||||||
@@ -1,12 +1,15 @@
|
|||||||
//! This file implements the struct for an Tuple of Ring Rq elements and its
|
//! This file implements the struct for an Tuple of Ring Rq elements and its
|
||||||
//! operations.
|
//! operations, which are performed element-wise.
|
||||||
|
|
||||||
use anyhow::Result;
|
use anyhow::Result;
|
||||||
use itertools::zip_eq;
|
use itertools::zip_eq;
|
||||||
use rand::{distributions::Distribution, Rng};
|
use rand::{distributions::Distribution, Rng};
|
||||||
use rand_distr::{Normal, Uniform};
|
use rand_distr::{Normal, Uniform};
|
||||||
use std::iter::Sum;
|
use std::iter::Sum;
|
||||||
use std::{array, ops};
|
use std::{
|
||||||
|
array,
|
||||||
|
ops::{Add, Mul, Sub},
|
||||||
|
};
|
||||||
|
|
||||||
use crate::Ring;
|
use crate::Ring;
|
||||||
|
|
||||||
@@ -34,7 +37,7 @@ impl<R: Ring, const K: usize> TR<R, K> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<R: Ring, const K: usize> ops::Add<TR<R, K>> for TR<R, K> {
|
impl<R: Ring, const K: usize> Add<TR<R, K>> for TR<R, K> {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
fn add(self, other: Self) -> Self {
|
fn add(self, other: Self) -> Self {
|
||||||
Self(
|
Self(
|
||||||
@@ -45,7 +48,7 @@ impl<R: Ring, const K: usize> ops::Add<TR<R, K>> for TR<R, K> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<R: Ring, const K: usize> ops::Sub<TR<R, K>> for TR<R, K> {
|
impl<R: Ring, const K: usize> Sub<TR<R, K>> for TR<R, K> {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
fn sub(self, other: Self) -> Self {
|
fn sub(self, other: Self) -> Self {
|
||||||
Self(zip_eq(self.0, other.0).map(|(s, o)| s - o).collect())
|
Self(zip_eq(self.0, other.0).map(|(s, o)| s - o).collect())
|
||||||
@@ -54,13 +57,13 @@ impl<R: Ring, const K: usize> ops::Sub<TR<R, K>> for TR<R, K> {
|
|||||||
|
|
||||||
/// for (TR,TR), the Mul operation is defined as:
|
/// for (TR,TR), the Mul operation is defined as:
|
||||||
/// for A, B \in R^k, result = Σ A_i * B_i \in R
|
/// for A, B \in R^k, result = Σ A_i * B_i \in R
|
||||||
impl<R: Ring, const K: usize> ops::Mul<TR<R, K>> for TR<R, K> {
|
impl<R: Ring, const K: usize> Mul<TR<R, K>> for TR<R, K> {
|
||||||
type Output = R;
|
type Output = R;
|
||||||
fn mul(self, other: Self) -> R {
|
fn mul(self, other: Self) -> R {
|
||||||
zip_eq(self.0, other.0).map(|(s, o)| s * o).sum()
|
zip_eq(self.0, other.0).map(|(s, o)| s * o).sum()
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
impl<R: Ring, const K: usize> ops::Mul<&TR<R, K>> for &TR<R, K> {
|
impl<R: Ring, const K: usize> Mul<&TR<R, K>> for &TR<R, K> {
|
||||||
type Output = R;
|
type Output = R;
|
||||||
fn mul(self, other: &TR<R, K>) -> R {
|
fn mul(self, other: &TR<R, K>) -> R {
|
||||||
zip_eq(self.0.clone(), other.0.clone())
|
zip_eq(self.0.clone(), other.0.clone())
|
||||||
@@ -71,13 +74,13 @@ impl<R: Ring, const K: usize> ops::Mul<&TR<R, K>> for &TR<R, K> {
|
|||||||
|
|
||||||
/// for (TR, R), the Mul operation is defined as each element of TR is
|
/// for (TR, R), the Mul operation is defined as each element of TR is
|
||||||
/// multiplied by R
|
/// multiplied by R
|
||||||
impl<R: Ring, const K: usize> ops::Mul<R> for TR<R, K> {
|
impl<R: Ring, const K: usize> Mul<R> for TR<R, K> {
|
||||||
type Output = TR<R, K>;
|
type Output = TR<R, K>;
|
||||||
fn mul(self, other: R) -> TR<R, K> {
|
fn mul(self, other: R) -> TR<R, K> {
|
||||||
Self(self.0.iter().map(|s| s.clone() * other.clone()).collect())
|
Self(self.0.iter().map(|s| s.clone() * other.clone()).collect())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
impl<R: Ring, const K: usize> ops::Mul<&R> for &TR<R, K> {
|
impl<R: Ring, const K: usize> Mul<&R> for &TR<R, K> {
|
||||||
type Output = TR<R, K>;
|
type Output = TR<R, K>;
|
||||||
fn mul(self, other: &R) -> TR<R, K> {
|
fn mul(self, other: &R) -> TR<R, K> {
|
||||||
TR::<R, K>(self.0.iter().map(|s| s.clone() * other.clone()).collect())
|
TR::<R, K>(self.0.iter().map(|s| s.clone() * other.clone()).collect())
|
||||||
|
|||||||
@@ -14,17 +14,22 @@ const ERR_SIGMA: f64 = 3.2;
|
|||||||
pub struct GLev<const Q: u64, const N: usize, const K: usize>(pub(crate) Vec<GLWE<Q, N, K>>);
|
pub struct GLev<const Q: u64, const N: usize, const K: usize>(pub(crate) Vec<GLWE<Q, N, K>>);
|
||||||
|
|
||||||
impl<const Q: u64, const N: usize, const K: usize> GLev<Q, N, K> {
|
impl<const Q: u64, const N: usize, const K: usize> GLev<Q, N, K> {
|
||||||
|
pub fn encode<const T: u64>(m: &Rq<T, N>) -> Rq<Q, N> {
|
||||||
|
m.remodule::<Q>()
|
||||||
|
}
|
||||||
|
pub fn decode<const T: u64>(p: &Rq<Q, N>) -> Rq<T, N> {
|
||||||
|
p.remodule::<T>()
|
||||||
|
}
|
||||||
pub fn encrypt(
|
pub fn encrypt(
|
||||||
mut rng: impl Rng,
|
mut rng: impl Rng,
|
||||||
beta: u32,
|
beta: u32,
|
||||||
l: u32,
|
l: u32,
|
||||||
pk: &PublicKey<Q, N, K>,
|
pk: &PublicKey<Q, N, K>,
|
||||||
m: &Rq<Q, N>,
|
m: &Rq<Q, N>,
|
||||||
// delta: u64,
|
|
||||||
) -> Result<Self> {
|
) -> Result<Self> {
|
||||||
let glev: Vec<GLWE<Q, N, K>> = (0..l)
|
let glev: Vec<GLWE<Q, N, K>> = (1..l + 1)
|
||||||
.map(|i| {
|
.map(|i| {
|
||||||
GLWE::<Q, N, K>::encrypt(&mut rng, pk, &(*m * (Q / beta.pow(i as u32) as u64)), 1)
|
GLWE::<Q, N, K>::encrypt(&mut rng, pk, &(*m * (Q / beta.pow(i as u32) as u64)))
|
||||||
})
|
})
|
||||||
.collect::<Result<Vec<_>>>()?;
|
.collect::<Result<Vec<_>>>()?;
|
||||||
|
|
||||||
@@ -36,19 +41,19 @@ impl<const Q: u64, const N: usize, const K: usize> GLev<Q, N, K> {
|
|||||||
l: u32,
|
l: u32,
|
||||||
sk: &SecretKey<Q, N, K>,
|
sk: &SecretKey<Q, N, K>,
|
||||||
m: &Rq<Q, N>,
|
m: &Rq<Q, N>,
|
||||||
// delta: u64,
|
|
||||||
) -> Result<Self> {
|
) -> Result<Self> {
|
||||||
let glev: Vec<GLWE<Q, N, K>> = (0..l)
|
let glev: Vec<GLWE<Q, N, K>> = (1..l + 1)
|
||||||
.map(|i| {
|
.map(|i| {
|
||||||
GLWE::<Q, N, K>::encrypt_s(&mut rng, sk, &(*m * (Q / beta.pow(i as u32) as u64)), 1)
|
GLWE::<Q, N, K>::encrypt_s(&mut rng, sk, &(*m * (Q / beta.pow(i as u32) as u64)))
|
||||||
})
|
})
|
||||||
.collect::<Result<Vec<_>>>()?;
|
.collect::<Result<Vec<_>>>()?;
|
||||||
|
|
||||||
Ok(Self(glev))
|
Ok(Self(glev))
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn decrypt<const T: u64>(&self, sk: &SecretKey<Q, N, K>, delta: u64) -> Rq<Q, N> {
|
pub fn decrypt<const T: u64>(&self, sk: &SecretKey<Q, N, K>, beta: u32) -> Rq<Q, N> {
|
||||||
self.0[1].decrypt::<T>(sk, delta)
|
let pt = self.0[0].decrypt(sk);
|
||||||
|
pt.mul_div_round(beta as u64, Q)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -70,7 +75,6 @@ mod tests {
|
|||||||
let beta: u32 = 2;
|
let beta: u32 = 2;
|
||||||
let l: u32 = 16;
|
let l: u32 = 16;
|
||||||
|
|
||||||
let delta: u64 = Q / T; // floored
|
|
||||||
let mut rng = rand::thread_rng();
|
let mut rng = rand::thread_rng();
|
||||||
|
|
||||||
for _ in 0..200 {
|
for _ in 0..200 {
|
||||||
@@ -78,12 +82,13 @@ mod tests {
|
|||||||
|
|
||||||
let msg_dist = Uniform::new(0_u64, T);
|
let msg_dist = Uniform::new(0_u64, T);
|
||||||
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let m: Rq<Q, N> = m.remodule::<Q>();
|
let p: Rq<Q, N> = S::encode::<T>(&m); // plaintext
|
||||||
|
|
||||||
let c = S::encrypt(&mut rng, beta, l, &pk, &m)?;
|
let c = S::encrypt(&mut rng, beta, l, &pk, &p)?;
|
||||||
let m_recovered = c.decrypt::<T>(&sk, delta);
|
let p_recovered = c.decrypt::<T>(&sk, beta);
|
||||||
|
let m_recovered = S::decode::<T>(&p_recovered);
|
||||||
|
|
||||||
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
|
assert_eq!(m, m_recovered);
|
||||||
}
|
}
|
||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
|
|||||||
114
gfhe/src/glwe.rs
114
gfhe/src/glwe.rs
@@ -80,29 +80,30 @@ impl<const Q: u64, const N: usize, const K: usize> GLWE<Q, N, K> {
|
|||||||
r
|
r
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// scale up
|
||||||
|
pub fn encode<const T: u64>(m: &Rq<T, N>) -> Rq<Q, N> {
|
||||||
|
let m = m.remodule::<Q>();
|
||||||
|
let delta = Q / T; // floored
|
||||||
|
m * delta
|
||||||
|
}
|
||||||
|
// scale down
|
||||||
|
pub fn decode<const T: u64>(p: &Rq<Q, N>) -> Rq<T, N> {
|
||||||
|
let r = p.mul_div_round(T, Q);
|
||||||
|
r.remodule::<T>()
|
||||||
|
}
|
||||||
|
|
||||||
// encrypts with the given SecretKey (instead of PublicKey)
|
// encrypts with the given SecretKey (instead of PublicKey)
|
||||||
pub fn encrypt_s(
|
pub fn encrypt_s(mut rng: impl Rng, sk: &SecretKey<Q, N, K>, m: &Rq<Q, N>) -> Result<Self> {
|
||||||
mut rng: impl Rng,
|
|
||||||
sk: &SecretKey<Q, N, K>,
|
|
||||||
m: &Rq<Q, N>,
|
|
||||||
// TODO delta not as input
|
|
||||||
delta: u64,
|
|
||||||
) -> Result<Self> {
|
|
||||||
let Xi_key = Uniform::new(0_f64, 2_f64);
|
let Xi_key = Uniform::new(0_f64, 2_f64);
|
||||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||||
|
|
||||||
let a: TR<Rq<Q, N>, K> = TR::rand(&mut rng, Xi_key);
|
let a: TR<Rq<Q, N>, K> = TR::rand(&mut rng, Xi_key);
|
||||||
let e = Rq::<Q, N>::rand(&mut rng, Xi_err);
|
let e = Rq::<Q, N>::rand(&mut rng, Xi_err);
|
||||||
|
|
||||||
let b: Rq<Q, N> = (&a * &sk.0) + *m * delta + e;
|
let b: Rq<Q, N> = (&a * &sk.0) + *m + e;
|
||||||
Ok(Self(a, b))
|
Ok(Self(a, b))
|
||||||
}
|
}
|
||||||
pub fn encrypt(
|
pub fn encrypt(mut rng: impl Rng, pk: &PublicKey<Q, N, K>, m: &Rq<Q, N>) -> Result<Self> {
|
||||||
mut rng: impl Rng,
|
|
||||||
pk: &PublicKey<Q, N, K>,
|
|
||||||
m: &Rq<Q, N>,
|
|
||||||
delta: u64,
|
|
||||||
) -> Result<Self> {
|
|
||||||
let Xi_key = Uniform::new(0_f64, 2_f64);
|
let Xi_key = Uniform::new(0_f64, 2_f64);
|
||||||
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||||
|
|
||||||
@@ -111,15 +112,14 @@ impl<const Q: u64, const N: usize, const K: usize> GLWE<Q, N, K> {
|
|||||||
let e0 = Rq::<Q, N>::rand(&mut rng, Xi_err);
|
let e0 = Rq::<Q, N>::rand(&mut rng, Xi_err);
|
||||||
let e1 = TR::<Rq<Q, N>, K>::rand(&mut rng, Xi_err);
|
let e1 = TR::<Rq<Q, N>, K>::rand(&mut rng, Xi_err);
|
||||||
|
|
||||||
let b: Rq<Q, N> = pk.0 * u + *m * delta + e0;
|
let b: Rq<Q, N> = pk.0 * u + *m + e0;
|
||||||
let d: TR<Rq<Q, N>, K> = &pk.1 * &u + e1;
|
let d: TR<Rq<Q, N>, K> = &pk.1 * &u + e1;
|
||||||
|
|
||||||
Ok(Self(d, b))
|
Ok(Self(d, b))
|
||||||
}
|
}
|
||||||
pub fn decrypt<const T: u64>(&self, sk: &SecretKey<Q, N, K>, delta: u64) -> Rq<Q, N> {
|
pub fn decrypt(&self, sk: &SecretKey<Q, N, K>) -> Rq<Q, N> {
|
||||||
let (d, b): (TR<Rq<Q, N>, K>, Rq<Q, N>) = (self.0.clone(), self.1);
|
let (d, b): (TR<Rq<Q, N>, K>, Rq<Q, N>) = (self.0.clone(), self.1);
|
||||||
let r: Rq<Q, N> = b - &d * &sk.0;
|
let r: Rq<Q, N> = b - &d * &sk.0;
|
||||||
let r = r.mul_div_round(T, Q);
|
|
||||||
r
|
r
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -215,7 +215,6 @@ mod tests {
|
|||||||
const K: usize = 16;
|
const K: usize = 16;
|
||||||
type S = GLWE<Q, N, K>;
|
type S = GLWE<Q, N, K>;
|
||||||
|
|
||||||
let delta: u64 = Q / T; // floored
|
|
||||||
let mut rng = rand::thread_rng();
|
let mut rng = rand::thread_rng();
|
||||||
|
|
||||||
for _ in 0..200 {
|
for _ in 0..200 {
|
||||||
@@ -223,16 +222,18 @@ mod tests {
|
|||||||
|
|
||||||
let msg_dist = Uniform::new(0_u64, T);
|
let msg_dist = Uniform::new(0_u64, T);
|
||||||
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let m: Rq<Q, N> = m.remodule::<Q>();
|
let p = S::encode::<T>(&m); // plaintext
|
||||||
|
|
||||||
let c = S::encrypt(&mut rng, &pk, &m, delta)?;
|
let c = S::encrypt(&mut rng, &pk, &p)?;
|
||||||
let m_recovered = c.decrypt::<T>(&sk, delta);
|
let p_recovered = c.decrypt(&sk);
|
||||||
|
let m_recovered = S::decode::<T>(&p_recovered);
|
||||||
|
|
||||||
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
|
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
|
||||||
|
|
||||||
// same but using encrypt_s (with sk instead of pk))
|
// same but using encrypt_s (with sk instead of pk))
|
||||||
let c = S::encrypt_s(&mut rng, &sk, &m, delta)?;
|
let c = S::encrypt_s(&mut rng, &sk, &p)?;
|
||||||
let m_recovered = c.decrypt::<T>(&sk, delta);
|
let p_recovered = c.decrypt(&sk);
|
||||||
|
let m_recovered = S::decode::<T>(&p_recovered);
|
||||||
|
|
||||||
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
|
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
|
||||||
}
|
}
|
||||||
@@ -248,7 +249,6 @@ mod tests {
|
|||||||
const K: usize = 16;
|
const K: usize = 16;
|
||||||
type S = GLWE<Q, N, K>;
|
type S = GLWE<Q, N, K>;
|
||||||
|
|
||||||
let delta: u64 = Q / T; // floored
|
|
||||||
let mut rng = rand::thread_rng();
|
let mut rng = rand::thread_rng();
|
||||||
|
|
||||||
for _ in 0..200 {
|
for _ in 0..200 {
|
||||||
@@ -257,15 +257,16 @@ mod tests {
|
|||||||
let msg_dist = Uniform::new(0_u64, T);
|
let msg_dist = Uniform::new(0_u64, T);
|
||||||
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let m1: Rq<Q, N> = m1.remodule::<Q>();
|
let p1: Rq<Q, N> = S::encode::<T>(&m1); // plaintext
|
||||||
let m2: Rq<Q, N> = m2.remodule::<Q>();
|
let p2: Rq<Q, N> = S::encode::<T>(&m2); // plaintext
|
||||||
|
|
||||||
let c1 = S::encrypt(&mut rng, &pk, &m1, delta)?;
|
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
|
||||||
let c2 = S::encrypt(&mut rng, &pk, &m2, delta)?;
|
let c2 = S::encrypt(&mut rng, &pk, &p2)?;
|
||||||
|
|
||||||
let c3 = c1 + c2;
|
let c3 = c1 + c2;
|
||||||
|
|
||||||
let m3_recovered = c3.decrypt::<T>(&sk, delta);
|
let p3_recovered = c3.decrypt(&sk);
|
||||||
|
let m3_recovered = S::decode::<T>(&p3_recovered);
|
||||||
|
|
||||||
assert_eq!((m1 + m2).remodule::<T>(), m3_recovered.remodule::<T>());
|
assert_eq!((m1 + m2).remodule::<T>(), m3_recovered.remodule::<T>());
|
||||||
}
|
}
|
||||||
@@ -281,7 +282,6 @@ mod tests {
|
|||||||
const K: usize = 16;
|
const K: usize = 16;
|
||||||
type S = GLWE<Q, N, K>;
|
type S = GLWE<Q, N, K>;
|
||||||
|
|
||||||
let delta: u64 = Q / T; // floored
|
|
||||||
let mut rng = rand::thread_rng();
|
let mut rng = rand::thread_rng();
|
||||||
|
|
||||||
for _ in 0..200 {
|
for _ in 0..200 {
|
||||||
@@ -290,17 +290,17 @@ mod tests {
|
|||||||
let msg_dist = Uniform::new(0_u64, T);
|
let msg_dist = Uniform::new(0_u64, T);
|
||||||
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let m1: Rq<Q, N> = m1.remodule::<Q>();
|
let p1: Rq<Q, N> = S::encode::<T>(&m1); // plaintext
|
||||||
let m2: Rq<Q, N> = m2.remodule::<Q>();
|
let p2: Rq<Q, N> = S::encode::<T>(&m2); // plaintext
|
||||||
let m2_scaled: Rq<Q, N> = m2 * delta;
|
|
||||||
|
|
||||||
let c1 = S::encrypt(&mut rng, &pk, &m1, delta)?;
|
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
|
||||||
|
|
||||||
let c3 = c1 + m2_scaled;
|
let c3 = c1 + p2;
|
||||||
|
|
||||||
let m3_recovered = c3.decrypt::<T>(&sk, delta);
|
let p3_recovered = c3.decrypt(&sk);
|
||||||
|
let m3_recovered = S::decode::<T>(&p3_recovered);
|
||||||
|
|
||||||
assert_eq!((m1 + m2).remodule::<T>(), m3_recovered.remodule::<T>());
|
assert_eq!((m1 + m2).remodule::<T>(), m3_recovered);
|
||||||
}
|
}
|
||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
@@ -314,7 +314,6 @@ mod tests {
|
|||||||
const K: usize = 16;
|
const K: usize = 16;
|
||||||
type S = GLWE<Q, N, K>;
|
type S = GLWE<Q, N, K>;
|
||||||
|
|
||||||
let delta: u64 = Q / T; // floored
|
|
||||||
let mut rng = rand::thread_rng();
|
let mut rng = rand::thread_rng();
|
||||||
|
|
||||||
for _ in 0..200 {
|
for _ in 0..200 {
|
||||||
@@ -323,14 +322,15 @@ mod tests {
|
|||||||
let msg_dist = Uniform::new(0_u64, T);
|
let msg_dist = Uniform::new(0_u64, T);
|
||||||
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
let m1 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
let m2 = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let m1: Rq<Q, N> = m1.remodule::<Q>();
|
let p1: Rq<Q, N> = S::encode::<T>(&m1); // plaintext
|
||||||
let m2: Rq<Q, N> = m2.remodule::<Q>();
|
let p2: Rq<Q, N> = m2.remodule::<Q>();
|
||||||
let c1 = S::encrypt(&mut rng, &pk, &m1, delta)?;
|
|
||||||
|
|
||||||
let c3 = c1 * m2;
|
let c1 = S::encrypt(&mut rng, &pk, &p1)?;
|
||||||
|
|
||||||
let m3_recovered: Rq<Q, N> = c3.decrypt::<T>(&sk, delta);
|
let c3 = c1 * p2;
|
||||||
let m3_recovered: Rq<T, N> = m3_recovered.remodule::<T>();
|
|
||||||
|
let p3_recovered: Rq<Q, N> = c3.decrypt(&sk);
|
||||||
|
let m3_recovered = S::decode::<T>(&p3_recovered);
|
||||||
assert_eq!((m1.to_r() * m2.to_r()).to_rq::<T>(), m3_recovered);
|
assert_eq!((m1.to_r() * m2.to_r()).to_rq::<T>(), m3_recovered);
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -360,17 +360,18 @@ mod tests {
|
|||||||
|
|
||||||
let msg_dist = Uniform::new(0_u64, T);
|
let msg_dist = Uniform::new(0_u64, T);
|
||||||
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let m: Rq<Q, N> = m.remodule::<Q>();
|
let p = S::encode::<T>(&m); // plaintext
|
||||||
|
|
||||||
let c = S::encrypt(&mut rng, &pk, &m, delta)?;
|
let c = S::encrypt(&mut rng, &pk, &p)?;
|
||||||
// let c = S::encrypt_s(&mut rng, &sk, &m, delta)?;
|
// let c = S::encrypt_s(&mut rng, &sk, &m, delta)?;
|
||||||
|
|
||||||
let c2 = c.mod_switch::<P>();
|
let c2 = c.mod_switch::<P>();
|
||||||
let sk2: SecretKey<P, N, K> =
|
let sk2: SecretKey<P, N, K> =
|
||||||
SecretKey(TR(sk.0 .0.iter().map(|s_i| s_i.remodule::<P>()).collect()));
|
SecretKey(TR(sk.0 .0.iter().map(|s_i| s_i.remodule::<P>()).collect()));
|
||||||
let delta2: u64 = ((P as f64 * delta as f64) / Q as f64).round() as u64;
|
// let delta2: u64 = ((P as f64 * delta as f64) / Q as f64).round() as u64;
|
||||||
|
|
||||||
let m_recovered = c2.decrypt::<T>(&sk2, delta2);
|
let p_recovered = c2.decrypt(&sk2);
|
||||||
|
let m_recovered = GLWE::<P, N, K>::decode::<T>(&p_recovered);
|
||||||
|
|
||||||
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
|
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
|
||||||
}
|
}
|
||||||
@@ -389,7 +390,6 @@ mod tests {
|
|||||||
let beta: u32 = 2;
|
let beta: u32 = 2;
|
||||||
let l: u32 = 16;
|
let l: u32 = 16;
|
||||||
|
|
||||||
let delta: u64 = Q / T; // floored
|
|
||||||
let mut rng = rand::thread_rng();
|
let mut rng = rand::thread_rng();
|
||||||
|
|
||||||
let (sk, pk) = S::new_key(&mut rng)?;
|
let (sk, pk) = S::new_key(&mut rng)?;
|
||||||
@@ -399,21 +399,23 @@ mod tests {
|
|||||||
|
|
||||||
let msg_dist = Uniform::new(0_u64, T);
|
let msg_dist = Uniform::new(0_u64, T);
|
||||||
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
let m = Rq::<T, N>::rand_u64(&mut rng, msg_dist)?;
|
||||||
let m: Rq<Q, N> = m.remodule::<Q>();
|
let p: Rq<Q, N> = S::encode::<T>(&m); // plaintext
|
||||||
|
|
||||||
let c = S::encrypt_s(&mut rng, &sk, &m, delta)?;
|
let c = S::encrypt_s(&mut rng, &sk, &p)?;
|
||||||
|
|
||||||
let c2 = c.key_switch(beta, l, &ksk);
|
let c2 = c.key_switch(beta, l, &ksk);
|
||||||
|
|
||||||
// decrypt with the 2nd secret key
|
// decrypt with the 2nd secret key
|
||||||
let m_recovered = c2.decrypt::<T>(&sk2, delta);
|
let p_recovered = c2.decrypt(&sk2);
|
||||||
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
|
let m_recovered = S::decode::<T>(&p_recovered);
|
||||||
|
assert_eq!(m, m_recovered);
|
||||||
|
|
||||||
// do the same but now encrypting with pk
|
// do the same but now encrypting with pk
|
||||||
// let c = S::encrypt(&mut rng, &pk, &m, delta)?;
|
// let c = S::encrypt(&mut rng, &pk, &p)?;
|
||||||
// let c2 = c.key_switch(beta, l, &ksk);
|
// let c2 = c.key_switch(beta, l, &ksk);
|
||||||
// let m_recovered = c2.decrypt::<T>(&sk2, delta);
|
// let p_recovered = c2.decrypt(&sk2);
|
||||||
// assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
|
// let m_recovered = S::decode::<T>(&p_recovered);
|
||||||
|
// assert_eq!(m, m_recovered);
|
||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|||||||
12
tfhe/Cargo.toml
Normal file
12
tfhe/Cargo.toml
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
[package]
|
||||||
|
name = "tfhe"
|
||||||
|
version = "0.1.0"
|
||||||
|
edition = "2024"
|
||||||
|
|
||||||
|
[dependencies]
|
||||||
|
anyhow = { workspace = true }
|
||||||
|
rand = { workspace = true }
|
||||||
|
rand_distr = { workspace = true }
|
||||||
|
itertools = { workspace = true }
|
||||||
|
|
||||||
|
arith = { path="../arith" }
|
||||||
8
tfhe/src/lib.rs
Normal file
8
tfhe/src/lib.rs
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
//! Implementation of TFHE https://eprint.iacr.org/2018/421.pdf
|
||||||
|
#![allow(non_snake_case)]
|
||||||
|
#![allow(non_upper_case_globals)]
|
||||||
|
#![allow(non_camel_case_types)]
|
||||||
|
#![allow(clippy::upper_case_acronyms)]
|
||||||
|
#![allow(dead_code)] // TMP
|
||||||
|
|
||||||
|
pub mod tlwe;
|
||||||
120
tfhe/src/tlwe.rs
Normal file
120
tfhe/src/tlwe.rs
Normal file
@@ -0,0 +1,120 @@
|
|||||||
|
use anyhow::Result;
|
||||||
|
use itertools::zip_eq;
|
||||||
|
use rand::distributions::Standard;
|
||||||
|
use rand::Rng;
|
||||||
|
use rand_distr::{Normal, Uniform};
|
||||||
|
use std::array;
|
||||||
|
use std::iter::Sum;
|
||||||
|
use std::ops::{Add, AddAssign, Mul, Sub};
|
||||||
|
|
||||||
|
use arith::{Ring, Rq, Tn, Zq, T64, TR};
|
||||||
|
|
||||||
|
const ERR_SIGMA: f64 = 3.2;
|
||||||
|
|
||||||
|
#[derive(Clone, Debug)]
|
||||||
|
pub struct TLWE<const K: usize>(TR<Tn<1>, K>, Tn<1>);
|
||||||
|
|
||||||
|
#[derive(Clone, Debug)]
|
||||||
|
pub struct SecretKey<const K: usize>(TR<Tn<1>, K>);
|
||||||
|
#[derive(Clone, Debug)]
|
||||||
|
pub struct PublicKey<const K: usize>(Tn<1>, TR<Tn<1>, K>);
|
||||||
|
|
||||||
|
impl<const K: usize> TLWE<K> {
|
||||||
|
pub fn zero() -> Self {
|
||||||
|
Self(TR::zero(), Tn::zero())
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn new_key(mut rng: impl Rng) -> Result<(SecretKey<K>, PublicKey<K>)> {
|
||||||
|
let Xi_key = Uniform::new(0_f64, 2_f64);
|
||||||
|
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||||
|
|
||||||
|
let s: TR<Tn<1>, K> = TR::rand(&mut rng, Xi_key);
|
||||||
|
let a: TR<Tn<1>, K> = TR::rand(&mut rng, Standard);
|
||||||
|
let e = Tn::rand(&mut rng, Xi_err);
|
||||||
|
|
||||||
|
let pk: PublicKey<K> = PublicKey((&a * &s) + e, a);
|
||||||
|
Ok((SecretKey(s), pk))
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn encode<const P: u64>(m: Rq<P, 1>) -> Tn<1> {
|
||||||
|
let delta = u64::MAX / P; // floored
|
||||||
|
let coeffs = m.coeffs();
|
||||||
|
Tn(array::from_fn(|i| T64(coeffs[i].0 * delta)))
|
||||||
|
}
|
||||||
|
pub fn decode<const P: u64>(p: Tn<1>) -> Rq<P, 1> {
|
||||||
|
let p = p.mul_div_round(P, u64::MAX);
|
||||||
|
Rq::<P, 1>::from_vec_u64(p.coeffs().iter().map(|c| c.0).collect())
|
||||||
|
}
|
||||||
|
|
||||||
|
// encrypts with the given SecretKey (instead of PublicKey)
|
||||||
|
pub fn encrypt_s(mut rng: impl Rng, sk: &SecretKey<K>, m: &Tn<1>) -> Result<Self> {
|
||||||
|
let Xi_key = Uniform::new(0_f64, 2_f64);
|
||||||
|
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||||
|
|
||||||
|
let a: TR<Tn<1>, K> = TR::rand(&mut rng, Xi_key);
|
||||||
|
let e = Tn::rand(&mut rng, Xi_err);
|
||||||
|
|
||||||
|
let b: Tn<1> = (&a * &sk.0) + *m + e;
|
||||||
|
Ok(Self(a, b))
|
||||||
|
}
|
||||||
|
pub fn encrypt(mut rng: impl Rng, pk: &PublicKey<K>, m: &Tn<1>) -> Result<Self> {
|
||||||
|
let Xi_key = Uniform::new(0_f64, 2_f64);
|
||||||
|
let Xi_err = Normal::new(0_f64, ERR_SIGMA)?;
|
||||||
|
|
||||||
|
let u: Tn<1> = Tn::rand(&mut rng, Xi_key);
|
||||||
|
|
||||||
|
let e0: Tn<1> = Tn::rand(&mut rng, Xi_err);
|
||||||
|
let e1 = TR::<Tn<1>, K>::rand(&mut rng, Xi_err);
|
||||||
|
|
||||||
|
let b: Tn<1> = pk.0 * u + *m + e0;
|
||||||
|
let d: TR<Tn<1>, K> = &pk.1 * &u + e1;
|
||||||
|
|
||||||
|
Ok(Self(d, b))
|
||||||
|
}
|
||||||
|
pub fn decrypt(&self, sk: &SecretKey<K>) -> Tn<1> {
|
||||||
|
let (d, b): (TR<Tn<1>, K>, Tn<1>) = (self.0.clone(), self.1);
|
||||||
|
b - &d * &sk.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use anyhow::Result;
|
||||||
|
use rand::distributions::Uniform;
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_encrypt_decrypt() -> Result<()> {
|
||||||
|
const T: u64 = 32; // plaintext modulus
|
||||||
|
const K: usize = 16;
|
||||||
|
type S = TLWE<K>;
|
||||||
|
|
||||||
|
let mut rng = rand::thread_rng();
|
||||||
|
|
||||||
|
for _ in 0..200 {
|
||||||
|
let (sk, pk) = S::new_key(&mut rng)?;
|
||||||
|
|
||||||
|
let msg_dist = Uniform::new(0_u64, T);
|
||||||
|
let m = Rq::<T, 1>::rand_u64(&mut rng, msg_dist)?;
|
||||||
|
dbg!(&m);
|
||||||
|
let p: Tn<1> = S::encode::<T>(m);
|
||||||
|
dbg!(&p);
|
||||||
|
|
||||||
|
let c = S::encrypt(&mut rng, &pk, &p)?;
|
||||||
|
let p_recovered = c.decrypt(&sk);
|
||||||
|
let m_recovered = S::decode::<T>(p_recovered);
|
||||||
|
|
||||||
|
assert_eq!(m, m_recovered);
|
||||||
|
|
||||||
|
// same but using encrypt_s (with sk instead of pk))
|
||||||
|
let c = S::encrypt_s(&mut rng, &sk, &p)?;
|
||||||
|
let p_recovered = c.decrypt(&sk);
|
||||||
|
let m_recovered = S::decode::<T>(p_recovered);
|
||||||
|
|
||||||
|
assert_eq!(m, m_recovered);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user