feat: Plonk optimizations (#39)

* Fixed poseidion hash TOOD in fri/fri.go

* optimized goldilocks

* Another optimization

* Down to 16 million

* Finished TODOs
This commit is contained in:
puma314
2023-10-13 14:00:54 -07:00
committed by GitHub
parent 940c81b212
commit 89b5a01e4b
9 changed files with 171 additions and 82 deletions

View File

@@ -106,11 +106,15 @@ func (f *Chip) verifyMerkleProofToCapWithCapIndex(
currentDigest := f.poseidonBN254Chip.HashOrNoop(leafData)
for i, sibling := range proof.Siblings {
bit := leafIndexBits[i]
// TODO: Don't need to do two hashes by using a trick that the plonky2 verifier circuit does
// https://github.com/mir-protocol/plonky2/blob/973624f12d2d12d74422b3ea051358b9eaacb050/plonky2/src/gates/poseidon.rs#L298
leftHash := f.poseidonBN254Chip.TwoToOne(sibling, currentDigest)
rightHash := f.poseidonBN254Chip.TwoToOne(currentDigest, sibling)
currentDigest = f.api.Select(bit, leftHash, rightHash)
var inputs poseidon.BN254State
inputs[0] = frontend.Variable(0)
inputs[1] = frontend.Variable(0)
inputs[2] = f.api.Select(bit, sibling, currentDigest)
inputs[3] = f.api.Select(bit, currentDigest, sibling)
state := f.poseidonBN254Chip.Poseidon(inputs)
currentDigest = state[0]
}
// We assume that the cap_height is 4. Create two levels of the Lookup2 circuit
@@ -152,29 +156,6 @@ func (f *Chip) verifyInitialProof(xIndexBits []frontend.Variable, proof *variabl
}
}
// / We decompose FRI query indices into bits without verifying that the decomposition given by
// / the prover is the canonical one. In particular, if `x_index < 2^field_bits - p`, then the
// / prover could supply the binary encoding of either `x_index` or `x_index + p`, since they are
// / congruent mod `p`. However, this only occurs with probability
// / p_ambiguous = (2^field_bits - p) / p
// / which is small for the field that we use in practice.
// /
// / In particular, the soundness error of one FRI query is roughly the codeword rate, which
// / is much larger than this ambiguous-element probability given any reasonable parameters.
// / Thus ambiguous elements contribute a negligible amount to soundness error.
// /
// / Here we compare the probabilities as a sanity check, to verify the claim above.
func (f *Chip) assertNoncanonicalIndicesOK() {
numAmbiguousElems := uint64(math.MaxUint64) - goldilocks.Modulus().Uint64() + 1
queryError := f.friParams.Config.Rate()
pAmbiguous := float64(numAmbiguousElems) / float64(goldilocks.Modulus().Uint64())
// TODO: Check that pAmbiguous value is the same as the one in plonky2 verifier
if pAmbiguous >= queryError*1e-5 {
panic("A non-negligible portion of field elements are in the range that permits non-canonical encodings. Need to do more analysis or enforce canonical encodings.")
}
}
func (f *Chip) expFromBitsConstBase(
base goldilocks.Element,
exponentBits []frontend.Variable,
@@ -209,7 +190,7 @@ func (f *Chip) calculateSubgroupX(
) gl.Variable {
// Compute x from its index
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
// TODO - Make these as global values
// OPTIMIZE - Make these as global values
g := gl.NewVariable(gl.MULTIPLICATIVE_GROUP_GENERATOR.Uint64())
base := gl.PrimitiveRootOfUnity(nLog)
@@ -343,7 +324,7 @@ func (f *Chip) computeEvaluation(
// The evaluation vector needs to be reordered first. Permute the evals array such that each
// element's new index is the bit reverse of it's original index.
// TODO: Optimization - Since the size of the evals array should be constant (e.g. 2^arityBits),
// OPTIMIZE - Since the size of the evals array should be constant (e.g. 2^arityBits),
// we can just hard code the permutation.
permutedEvals := make([]gl.QuadraticExtensionVariable, len(evals))
for i := uint8(0); i < uint8(len(evals)); i++ {
@@ -363,14 +344,14 @@ func (f *Chip) computeEvaluation(
xPoints := make([]gl.QuadraticExtensionVariable, len(evals))
yPoints := permutedEvals
// TODO: Make g_F a constant
// OPTIMIZE: Make g_F a constant
g_F := gl.NewVariable(g.Uint64()).ToQuadraticExtension()
xPoints[0] = gl.QuadraticExtensionVariable{cosetStart, gl.Zero()}
for i := 1; i < len(evals); i++ {
xPoints[i] = f.gl.MulExtension(xPoints[i-1], g_F)
}
// TODO: This is n^2. Is there a way to do this better?
// OPTIMIZE: This is n^2. Is there a way to do this better?
// Compute the barycentric weights
barycentricWeights := make([]gl.QuadraticExtensionVariable, len(xPoints))
for i := 0; i < len(xPoints); i++ {
@@ -385,7 +366,7 @@ func (f *Chip) computeEvaluation(
}
}
// Take the inverse of the barycentric weights
// TODO: Can provide a witness to this value
// OPTIMIZE: Can provide a witness to this value
barycentricWeights[i] = f.gl.InverseExtension(barycentricWeights[i])
}
@@ -403,7 +384,9 @@ func (f *Chip) verifyQueryRound(
nLog uint64,
roundProof *variables.FriQueryRound,
) {
f.assertNoncanonicalIndicesOK()
// Note assertNoncanonicalIndicesOK does not add any constraints, it's a sanity check on the config
assertNoncanonicalIndicesOK(*f.friParams)
xIndex = f.gl.Reduce(xIndex)
xIndexBits := f.api.ToBinary(xIndex.Limb, 64)[0 : f.friParams.DegreeBits+f.friParams.Config.RateBits]
capIndexBits := xIndexBits[len(xIndexBits)-int(f.friParams.Config.CapHeight):]
@@ -511,21 +494,18 @@ func (f *Chip) VerifyFriProof(
initialMerkleCaps []variables.FriMerkleCap,
friProof *variables.FriProof,
) {
// TODO: Check fri config
/* if let Some(max_arity_bits) = params.max_arity_bits() {
self.check_recursion_config::<C>(max_arity_bits);
}
debug_assert_eq!(
params.final_poly_len(),
proof.final_poly.len(),
"Final polynomial has wrong degree."
); */
// Not adding any constraints but a sanity check on the proof shape matching the friParams (constant).
validateFriProofShape(friProof, instance, f.friParams)
// Check POW
f.assertLeadingZeros(friChallenges.FriPowResponse, f.friParams.Config)
// Check that parameters are coherent. Not adding any constraints but a sanity check
// on the proof shape matching the friParams.
if int(f.friParams.Config.NumQueryRounds) != len(friProof.QueryRoundProofs) {
panic("Number of query rounds does not match config.")
}
precomputedReducedEvals := f.fromOpeningsAndAlpha(&openings, friChallenges.FriAlpha)
// Size of the LDE domain.

View File

@@ -1,7 +1,11 @@
package fri
import (
"math"
"github.com/consensys/gnark-crypto/field/goldilocks"
"github.com/succinctlabs/gnark-plonky2-verifier/types"
"github.com/succinctlabs/gnark-plonky2-verifier/variables"
)
type PolynomialInfo struct {
@@ -146,3 +150,79 @@ func friAllPolys(c *types.CommonCircuitData) []PolynomialInfo {
return returnArr
}
// This does not add any constraints, it's just a sanity check on the friParams
// It's a 1-1 port of assert_noncanonical_indices_ok from fri::recursive_verifier in plonky2
func assertNoncanonicalIndicesOK(friParams types.FriParams) {
numAmbiguousElems := uint64(math.MaxUint64) - goldilocks.Modulus().Uint64() + 1
queryError := friParams.Config.Rate()
pAmbiguous := float64(numAmbiguousElems) / float64(goldilocks.Modulus().Uint64())
if pAmbiguous >= queryError*1e-5 {
panic("A non-negligible portion of field elements are in the range that permits non-canonical encodings. Need to do more analysis or enforce canonical encodings.")
}
}
// This does not add any constraints, it is just a sanity check on the shapes of the proof variable
// and given FriParams. It's a 1-1 port of validate_fri_proof_shape from fri::validate_shape in plonky2
func validateFriProofShape(proof *variables.FriProof, instance InstanceInfo, params *types.FriParams) {
const SALT_SIZE = 4
commitPhaseMerkleCaps := proof.CommitPhaseMerkleCaps
queryRoundProofs := proof.QueryRoundProofs
finalPoly := proof.FinalPoly
capHeight := params.Config.CapHeight
for _, cap := range commitPhaseMerkleCaps {
if 1<<capHeight != len(cap) {
panic("config cap_height does not match commit_phase_merkle_caps")
}
}
for _, queryRound := range queryRoundProofs {
initialTreesProof := queryRound.InitialTreesProof
steps := queryRound.Steps
if len(initialTreesProof.EvalsProofs) != len(instance.Oracles) {
panic("eval proofs length is not equal to instance oracles length")
}
for i, evalProof := range initialTreesProof.EvalsProofs {
leaf := evalProof.Elements
merkleProof := evalProof.MerkleProof
oracle := instance.Oracles[i]
salt_size := 0
if oracle.Blinding && params.Hiding {
salt_size = SALT_SIZE
}
if len(leaf) != (int(oracle.NumPolys) + salt_size) {
panic("eval proof leaf length doesn't match oracle info")
}
if len(merkleProof.Siblings)+int(capHeight) != params.LdeBits() {
panic("length of merkle proof + capHeight doesn't match lde_bits from params")
}
}
if len(steps) != len(params.ReductionArityBits) {
panic("length of steps != params.reduction_arity_bits")
}
codewordLenBits := params.LdeBits()
for i, step := range steps {
evals := step.Evals
merkleProof := step.MerkleProof
arityBits := params.ReductionArityBits[i]
arity := 1 << arityBits
codewordLenBits -= int(arityBits)
if len(evals) != arity {
panic("len evals doesn't match arity")
}
if len(merkleProof.Siblings)+int(capHeight) != codewordLenBits {
panic("len merkleProof doesn't match codewordLenBits")
}
}
}
if len(finalPoly.Coeffs) != params.FinalPolyLen() {
panic("len finalPoly doesn't match params FinalPolyLen")
}
}