Browse Source

reduced the vanishing terms

main
Kevin Jue 2 years ago
parent
commit
ab164af7fc
2 changed files with 59 additions and 9 deletions
  1. +55
    -7
      plonky2_verifier/plonk.go
  2. +4
    -2
      plonky2_verifier/quadratic_extension.go

+ 55
- 7
plonky2_verifier/plonk.go

@ -148,16 +148,64 @@ func (p *PlonkChip) evalVanishingPoly() []QuadraticExtension {
)
}
return append(vanishingZ1Terms, vanishingPartialProductsTerms...)
vanishingTerms := append(vanishingZ1Terms, vanishingPartialProductsTerms...)
reducedValues := make([]QuadraticExtension, p.commonData.Config.NumChallenges)
for i := uint64(0); i < p.commonData.Config.NumChallenges; i++ {
reducedValues[i] = p.qe.ZERO_QE
}
// TODO: Enable this check once the custom gate evaluations are added to the
// vanishingTerms array
/*
if len(vanishingTerms) != int(p.commonData.QuotientDegreeFactor) {
panic("evalVanishingPoly: len(vanishingTerms) != int(p.commonData.QuotientDegreeFactor)")
}
*/
// reverse iterate the vanishingPartialProductsTerms array
for i := len(vanishingTerms) - 1; i >= 0; i-- {
for j := uint64(0); j < p.commonData.Config.NumChallenges; j++ {
reducedValues[j] = p.qe.AddExtension(
vanishingTerms[i],
p.qe.ScalarMulExtension(
reducedValues[j],
p.proofChallenges.PlonkAlphas[j],
),
)
}
}
return reducedValues
}
func (p *PlonkChip) Verify() {
p.evalVanishingPoly()
vanishingPolysZeta := p.evalVanishingPoly()
/*
vanishingPolys := p.evalVanishingPoly()
for _, vp := range vanishingPolysZeta {
p.qe.Println(vp)
}
for _, vp := range vanishingPolys {
//fmt.Println(vp)
}*/
/*
let alphas = &alphas.iter().map(|&a| a.into()).collect::<Vec<_>>();
plonk_common::reduce_with_powers_multi(&vanishing_terms, alphas)
// Check each polynomial identity, of the form `vanishing(x) = Z_H(x) quotient(x)`, at zeta.
let quotient_polys_zeta = &proof.openings.quotient_polys;
let zeta_pow_deg = challenges
.plonk_zeta
.exp_power_of_2(common_data.degree_bits());
let z_h_zeta = zeta_pow_deg - F::Extension::ONE;
// `quotient_polys_zeta` holds `num_challenges * quotient_degree_factor` evaluations.
// Each chunk of `quotient_degree_factor` holds the evaluations of `t_0(zeta),...,t_{quotient_degree_factor-1}(zeta)`
// where the "real" quotient polynomial is `t(X) = t_0(X) + t_1(X)*X^n + t_2(X)*X^{2n} + ...`.
// So to reconstruct `t(zeta)` we can compute `reduce_with_powers(chunk, zeta^n)` for each
// `quotient_degree_factor`-sized chunk of the original evaluations.
for (i, chunk) in quotient_polys_zeta
.chunks(common_data.quotient_degree_factor)
.enumerate()
{
ensure!(vanishing_polys_zeta[i] == z_h_zeta * reduce_with_powers(chunk, zeta_pow_deg));
}
*/
}

+ 4
- 2
plonky2_verifier/quadratic_extension.go

@ -14,7 +14,8 @@ type QuadraticExtensionAPI struct {
DTH_ROOT F
ZERO_F F
ONE QuadraticExtension
ONE QuadraticExtension
ZERO_QE QuadraticExtension
}
func NewQuadraticExtensionAPI(field frontend.API, degreeBits uint64) *QuadraticExtensionAPI {
@ -27,7 +28,8 @@ func NewQuadraticExtensionAPI(field frontend.API, degreeBits uint64) *QuadraticE
DTH_ROOT: NewFieldElement(18446744069414584320),
ZERO_F: NewFieldElement(0),
ONE: QuadraticExtension{NewFieldElement(1), NewFieldElement(0)},
ONE: QuadraticExtension{NewFieldElement(1), NewFieldElement(0)},
ZERO_QE: QuadraticExtension{NewFieldElement(0), NewFieldElement(0)},
}
}

Loading…
Cancel
Save