|
|
package prover
import ( "math" "math/big"
"github.com/iden3/go-circom-prover-verifier/types" "github.com/iden3/go-iden3-crypto/ff" )
type rootsT struct { roots [][]*ff.Element w []*ff.Element }
func newRootsT() rootsT { var roots rootsT
rem := new(big.Int).Sub(types.R, big.NewInt(1)) s := 0 for rem.Bit(0) == 0 { // rem.Bit==0 when even
s++ rem = new(big.Int).Rsh(rem, 1) } roots.w = make([]*ff.Element, s+1) roots.w[s] = ff.NewElement().SetBigInt(fExp(big.NewInt(5), rem))
n := s - 1 for n >= 0 { roots.w[n] = ff.NewElement().Mul(roots.w[n+1], roots.w[n+1]) n-- } roots.roots = make([][]*ff.Element, 50) // TODO WIP
roots.setRoots(15) return roots }
func (roots rootsT) setRoots(n int) { for i := n; i >= 0 && nil == roots.roots[i]; i-- { // TODO tmp i<=len(r)
r := ff.NewElement().SetBigInt(big.NewInt(1)) nroots := 1 << i var rootsi []*ff.Element for j := 0; j < nroots; j++ { rootsi = append(rootsi, r) r = ff.NewElement().Mul(r, roots.w[i]) } roots.roots[i] = rootsi } }
func fftroots(roots rootsT, pall []*ff.Element, bits, offset, step int) []*ff.Element { n := 1 << bits if n == 1 { return []*ff.Element{pall[offset]} } else if n == 2 { return []*ff.Element{ ff.NewElement().Add(pall[offset], pall[offset+step]), // TODO tmp
ff.NewElement().Sub(pall[offset], pall[offset+step]), } }
ndiv2 := n >> 1 p1 := fftroots(roots, pall, bits-1, offset, step*2) p2 := fftroots(roots, pall, bits-1, offset+step, step*2)
out := make([]*ff.Element, n) for i := 0; i < ndiv2; i++ { out[i] = ff.NewElement().Add(p1[i], ff.NewElement().Mul(roots.roots[bits][i], p2[i])) out[i+ndiv2] = ff.NewElement().Sub(p1[i], ff.NewElement().Mul(roots.roots[bits][i], p2[i])) } return out }
func fft(p []*ff.Element) []*ff.Element { if len(p) <= 1 { return p } bits := math.Log2(float64(len(p)-1)) + 1 roots := newRootsT() roots.setRoots(int(bits)) m := 1 << int(bits) ep := extend(p, m) res := fftroots(roots, ep, int(bits), 0, 1) return res }
func ifft(p []*ff.Element) []*ff.Element { res := fft(p) bits := math.Log2(float64(len(p)-1)) + 1 m := 1 << int(bits)
twoinvm := ff.NewElement().SetBigInt(fInv(fMul(big.NewInt(1), big.NewInt(int64(m)))))
var resn []*ff.Element for i := 0; i < m; i++ { resn = append(resn, ff.NewElement().Mul(res[(m-i)%m], twoinvm)) }
return resn }
func extend(p []*ff.Element, e int) []*ff.Element { if e == len(p) { return p } z := arrayOfZeroesE(e - len(p)) return append(p, z...) }
|