package prover
|
|
|
|
import (
|
|
"math"
|
|
"math/big"
|
|
|
|
"github.com/iden3/go-circom-prover-verifier/types"
|
|
"github.com/iden3/go-iden3-crypto/ff"
|
|
)
|
|
|
|
type rootsT struct {
|
|
roots [][]*ff.Element
|
|
w []*ff.Element
|
|
}
|
|
|
|
func newRootsT() rootsT {
|
|
var roots rootsT
|
|
|
|
rem := new(big.Int).Sub(types.R, big.NewInt(1))
|
|
s := 0
|
|
for rem.Bit(0) == 0 { // rem.Bit==0 when even
|
|
s++
|
|
rem = new(big.Int).Rsh(rem, 1)
|
|
}
|
|
roots.w = make([]*ff.Element, s+1)
|
|
roots.w[s] = ff.NewElement().SetBigInt(fExp(big.NewInt(5), rem))
|
|
|
|
n := s - 1
|
|
for n >= 0 {
|
|
roots.w[n] = ff.NewElement().Mul(roots.w[n+1], roots.w[n+1])
|
|
n--
|
|
}
|
|
roots.roots = make([][]*ff.Element, 50) // TODO WIP
|
|
|
|
roots.setRoots(15)
|
|
return roots
|
|
}
|
|
|
|
func (roots rootsT) setRoots(n int) {
|
|
for i := n; i >= 0 && nil == roots.roots[i]; i-- { // TODO tmp i<=len(r)
|
|
r := ff.NewElement().SetBigInt(big.NewInt(1))
|
|
nroots := 1 << i
|
|
var rootsi []*ff.Element
|
|
for j := 0; j < nroots; j++ {
|
|
rootsi = append(rootsi, r)
|
|
r = ff.NewElement().Mul(r, roots.w[i])
|
|
}
|
|
roots.roots[i] = rootsi
|
|
}
|
|
}
|
|
|
|
func fftroots(roots rootsT, pall []*ff.Element, bits, offset, step int) []*ff.Element {
|
|
n := 1 << bits
|
|
if n == 1 {
|
|
return []*ff.Element{pall[offset]}
|
|
} else if n == 2 {
|
|
return []*ff.Element{
|
|
ff.NewElement().Add(pall[offset], pall[offset+step]), // TODO tmp
|
|
ff.NewElement().Sub(pall[offset], pall[offset+step]),
|
|
}
|
|
}
|
|
|
|
ndiv2 := n >> 1
|
|
p1 := fftroots(roots, pall, bits-1, offset, step*2)
|
|
p2 := fftroots(roots, pall, bits-1, offset+step, step*2)
|
|
|
|
out := make([]*ff.Element, n)
|
|
for i := 0; i < ndiv2; i++ {
|
|
out[i] = ff.NewElement().Add(p1[i], ff.NewElement().Mul(roots.roots[bits][i], p2[i]))
|
|
out[i+ndiv2] = ff.NewElement().Sub(p1[i], ff.NewElement().Mul(roots.roots[bits][i], p2[i]))
|
|
}
|
|
return out
|
|
}
|
|
|
|
func fft(p []*ff.Element) []*ff.Element {
|
|
if len(p) <= 1 {
|
|
return p
|
|
}
|
|
bits := math.Log2(float64(len(p)-1)) + 1
|
|
roots := newRootsT()
|
|
roots.setRoots(int(bits))
|
|
m := 1 << int(bits)
|
|
ep := extend(p, m)
|
|
res := fftroots(roots, ep, int(bits), 0, 1)
|
|
return res
|
|
}
|
|
|
|
func ifft(p []*ff.Element) []*ff.Element {
|
|
res := fft(p)
|
|
bits := math.Log2(float64(len(p)-1)) + 1
|
|
m := 1 << int(bits)
|
|
|
|
twoinvm := ff.NewElement().SetBigInt(fInv(fMul(big.NewInt(1), big.NewInt(int64(m)))))
|
|
|
|
var resn []*ff.Element
|
|
for i := 0; i < m; i++ {
|
|
resn = append(resn, ff.NewElement().Mul(res[(m-i)%m], twoinvm))
|
|
}
|
|
|
|
return resn
|
|
}
|
|
|
|
func extend(p []*ff.Element, e int) []*ff.Element {
|
|
if e == len(p) {
|
|
return p
|
|
}
|
|
z := arrayOfZeroesE(e - len(p))
|
|
return append(p, z...)
|
|
}
|