|
|
package gocircomprover
import ( "bytes" "math/big" )
func arrayOfZeroes(n int) []*big.Int { var r []*big.Int for i := 0; i < n; i++ { r = append(r, new(big.Int).SetInt64(0)) } return r }
func FAdd(a, b *big.Int) *big.Int { ab := new(big.Int).Add(a, b) return new(big.Int).Mod(ab, R) }
func FSub(a, b *big.Int) *big.Int { ab := new(big.Int).Sub(a, b) return new(big.Int).Mod(ab, R) }
func FMul(a, b *big.Int) *big.Int { ab := new(big.Int).Mul(a, b) return new(big.Int).Mod(ab, R) }
func FDiv(a, b *big.Int) *big.Int { ab := new(big.Int).Mul(a, new(big.Int).ModInverse(b, R)) return new(big.Int).Mod(ab, R) }
func FNeg(a *big.Int) *big.Int { return new(big.Int).Mod(new(big.Int).Neg(a), R) }
func FInv(a *big.Int) *big.Int { return new(big.Int).ModInverse(a, R) }
func FExp(base *big.Int, e *big.Int) *big.Int { res := big.NewInt(1) rem := new(big.Int).Set(e) exp := base
for !bytes.Equal(rem.Bytes(), big.NewInt(int64(0)).Bytes()) { // if BigIsOdd(rem) {
if rem.Bit(0) == 1 { // .Bit(0) returns 1 when is odd
res = FMul(res, exp) } exp = FMul(exp, exp) rem = new(big.Int).Rsh(rem, 1) } return res }
func max(a, b int) int { if a > b { return a } return b }
func PolynomialSub(a, b []*big.Int) []*big.Int { r := arrayOfZeroes(max(len(a), len(b))) for i := 0; i < len(a); i++ { r[i] = FAdd(r[i], a[i]) } for i := 0; i < len(b); i++ { r[i] = FSub(r[i], b[i]) } return r }
func PolynomialMul(a, b []*big.Int) []*big.Int { r := arrayOfZeroes(len(a) + len(b) - 1) for i := 0; i < len(a); i++ { for j := 0; j < len(b); j++ { r[i+j] = FAdd(r[i+j], FMul(a[i], b[j])) } } return r }
func PolynomialDiv(a, b []*big.Int) ([]*big.Int, []*big.Int) { // https://en.wikipedia.org/wiki/Division_algorithm
r := arrayOfZeroes(len(a) - len(b) + 1) rem := a for len(rem) >= len(b) { l := FDiv(rem[len(rem)-1], b[len(b)-1]) pos := len(rem) - len(b) r[pos] = l aux := arrayOfZeroes(pos) aux1 := append(aux, l) aux2 := PolynomialSub(rem, PolynomialMul(b, aux1)) rem = aux2[:len(aux2)-1] } return r, rem }
|