package gocircomprover
|
|
|
|
import (
|
|
"bytes"
|
|
"math/big"
|
|
)
|
|
|
|
func arrayOfZeroes(n int) []*big.Int {
|
|
var r []*big.Int
|
|
for i := 0; i < n; i++ {
|
|
r = append(r, new(big.Int).SetInt64(0))
|
|
}
|
|
return r
|
|
}
|
|
|
|
func FAdd(a, b *big.Int) *big.Int {
|
|
ab := new(big.Int).Add(a, b)
|
|
return new(big.Int).Mod(ab, R)
|
|
}
|
|
|
|
func FSub(a, b *big.Int) *big.Int {
|
|
ab := new(big.Int).Sub(a, b)
|
|
return new(big.Int).Mod(ab, R)
|
|
}
|
|
|
|
func FMul(a, b *big.Int) *big.Int {
|
|
ab := new(big.Int).Mul(a, b)
|
|
return new(big.Int).Mod(ab, R)
|
|
}
|
|
|
|
func FDiv(a, b *big.Int) *big.Int {
|
|
ab := new(big.Int).Mul(a, new(big.Int).ModInverse(b, R))
|
|
return new(big.Int).Mod(ab, R)
|
|
}
|
|
|
|
func FNeg(a *big.Int) *big.Int {
|
|
return new(big.Int).Mod(new(big.Int).Neg(a), R)
|
|
}
|
|
|
|
func FInv(a *big.Int) *big.Int {
|
|
return new(big.Int).ModInverse(a, R)
|
|
}
|
|
|
|
func FExp(base *big.Int, e *big.Int) *big.Int {
|
|
res := big.NewInt(1)
|
|
rem := new(big.Int).Set(e)
|
|
exp := base
|
|
|
|
for !bytes.Equal(rem.Bytes(), big.NewInt(int64(0)).Bytes()) {
|
|
// if BigIsOdd(rem) {
|
|
if rem.Bit(0) == 1 { // .Bit(0) returns 1 when is odd
|
|
res = FMul(res, exp)
|
|
}
|
|
exp = FMul(exp, exp)
|
|
rem = new(big.Int).Rsh(rem, 1)
|
|
}
|
|
return res
|
|
}
|
|
|
|
func max(a, b int) int {
|
|
if a > b {
|
|
return a
|
|
}
|
|
return b
|
|
}
|
|
|
|
func PolynomialSub(a, b []*big.Int) []*big.Int {
|
|
r := arrayOfZeroes(max(len(a), len(b)))
|
|
for i := 0; i < len(a); i++ {
|
|
r[i] = FAdd(r[i], a[i])
|
|
}
|
|
for i := 0; i < len(b); i++ {
|
|
r[i] = FSub(r[i], b[i])
|
|
}
|
|
return r
|
|
}
|
|
|
|
func PolynomialMul(a, b []*big.Int) []*big.Int {
|
|
r := arrayOfZeroes(len(a) + len(b) - 1)
|
|
for i := 0; i < len(a); i++ {
|
|
for j := 0; j < len(b); j++ {
|
|
r[i+j] = FAdd(r[i+j], FMul(a[i], b[j]))
|
|
}
|
|
}
|
|
return r
|
|
}
|
|
|
|
func PolynomialDiv(a, b []*big.Int) ([]*big.Int, []*big.Int) {
|
|
// https://en.wikipedia.org/wiki/Division_algorithm
|
|
r := arrayOfZeroes(len(a) - len(b) + 1)
|
|
rem := a
|
|
for len(rem) >= len(b) {
|
|
l := FDiv(rem[len(rem)-1], b[len(b)-1])
|
|
pos := len(rem) - len(b)
|
|
r[pos] = l
|
|
aux := arrayOfZeroes(pos)
|
|
aux1 := append(aux, l)
|
|
aux2 := PolynomialSub(rem, PolynomialMul(b, aux1))
|
|
rem = aux2[:len(aux2)-1]
|
|
}
|
|
return r, rem
|
|
}
|