7 Commits

Author SHA1 Message Date
druiz0992
423d5f0ce7 Add G1/G2 table calculation functionality 2020-05-06 09:27:15 +02:00
arnaucube
a314ecc02f Add witness parser from binary file 2020-04-30 10:33:17 +02:00
arnaucube
700f2a4503 Fix prover benchmark file paths, update readme, and other small updates 2020-04-29 10:27:31 +02:00
arnau
02fc1ea6f7 Merge pull request #7 from iden3/feature/paralelism2
Implement more agressive parallelism
2020-04-28 20:14:06 +02:00
arnaucube
16054cc679 Remove inner prints 2020-04-28 20:09:16 +02:00
arnau
296dc53736 Merge pull request #6 from iden3/ed255-patch-1-1
Fix setting node version in gh workflow
2020-04-28 20:08:00 +02:00
Eduard S
0977fac08c Fix setting node version in gh workflow 2020-04-28 15:15:19 +02:00
17 changed files with 886 additions and 45 deletions

View File

@@ -17,11 +17,7 @@ jobs:
- name: Install Nodejs
uses: actions/setup-node@v1
with:
go-version: 10.x
- name: Install circom
run: npm install -g circom
- name: Install snarkjs
run: npm install -g snarkjs
node-version: '10.x'
- name: Checkout code
uses: actions/checkout@v2
- name: Compile circuits and execute Go tests

1
.gitignore vendored
View File

@@ -4,5 +4,6 @@ testdata/*/*.cpp
testdata/*/*.sym
testdata/*/*.r1cs
testdata/*/*.sol
testdata/*/*.bin
!testdata/*/inputs.json
cli/*.json

View File

@@ -1,6 +1,6 @@
# go-circom-prover-verifier [![GoDoc](https://godoc.org/github.com/iden3/go-circom-prover-verifier?status.svg)](https://godoc.org/github.com/iden3/go-circom-prover-verifier) [![Go Report Card](https://goreportcard.com/badge/github.com/iden3/go-circom-prover-verifier)](https://goreportcard.com/report/github.com/iden3/go-circom-prover-verifier) [![Test](https://github.com/iden3/go-circom-prover-verifier/workflows/Test/badge.svg)](https://github.com/iden3/go-circom-prover-verifier/actions?query=workflow%3ATest)
Experimental Go implementation of the [Groth16 protocol](https://eprint.iacr.org/2016/260.pdf) zkSNARK prover & verifier compatible with [circom](https://github.com/iden3/circom).
Go implementation of the [Groth16 protocol](https://eprint.iacr.org/2016/260.pdf) zkSNARK prover & verifier compatible with [circom](https://github.com/iden3/circom).
Using [bn256](https://github.com/ethereum/go-ethereum/tree/master/crypto/bn256/cloudflare) (used by [go-ethereum](https://github.com/ethereum/go-ethereum)) for the Pairing curve operations.
@@ -82,9 +82,9 @@ Usage of /tmp/go-build620318239/b001/exe/cli:
- Prove
```
> go run cli.go -prove -provingkey=../testdata/small/proving_key.json -witness=../testdata/small/witness.json
> go run cli.go -prove -provingkey=../testdata/circuit5k/proving_key.json -witness=../testdata/circuit5k/witness.json
```
- Verify
```
> go run cli.go -verify -verificationkey=../testdata/small/verification_key.json
> go run cli.go -verify -verificationkey=../testdata/circuit5k/verification_key.json
```

View File

@@ -5,6 +5,7 @@ import (
"flag"
"fmt"
"io/ioutil"
"os"
"time"
"github.com/iden3/go-circom-prover-verifier/parsers"
@@ -34,15 +35,15 @@ func main() {
if err != nil {
fmt.Println("Error:", err)
}
return
os.Exit(0)
} else if *verify {
err := cmdVerify(*proofPath, *verificationKeyPath, *publicPath)
if err != nil {
fmt.Println("Error:", err)
}
return
os.Exit(0)
}
fmt.Println("use -help for the list of commands")
flag.PrintDefaults()
}
func cmdProve(provingKeyPath, witnessPath, proofPath, publicPath string) error {

View File

@@ -1,11 +1,14 @@
package parsers
import (
"bufio"
"bytes"
"encoding/hex"
"encoding/json"
"fmt"
"io"
"math/big"
"os"
"strconv"
"strings"
@@ -496,3 +499,31 @@ func ProofToJson(p *types.Proof) ([]byte, error) {
return json.Marshal(ps)
}
// ParseWitness parses binary file representation of the Witness into the Witness struct
func ParseWitnessBin(f *os.File) (types.Witness, error) {
var w types.Witness
r := bufio.NewReader(f)
for {
b := make([]byte, 32)
n, err := r.Read(b)
if err == io.EOF {
return w, nil
} else if err != nil {
return nil, err
}
if n != 32 {
return nil, fmt.Errorf("error on value format, expected 32 bytes, got %v", n)
}
w = append(w, new(big.Int).SetBytes(swapEndianness(b[0:32])))
}
}
// swapEndianness swaps the order of the bytes in the slice.
func swapEndianness(b []byte) []byte {
o := make([]byte, len(b))
for i := range b {
o[len(b)-1-i] = b[i]
}
return o
}

View File

@@ -1,9 +1,12 @@
package parsers
import (
"io/ioutil"
"os"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func TestParseArrayG1(t *testing.T) {
@@ -143,3 +146,29 @@ func TestParseArrayG2(t *testing.T) {
assert.Equal(t, "bn256.G2((1922d70c934543aa655ec3277f7fa10a25ec973a4f001a7c54ce4954b4916f8c, 14865e836947c42cf35b47d30e06535fff9dab319c4296e28afde368960671d5), (2f50fbe77925b0a9d718c9ab38638bafa7c65f43f0d09035e518df97ad294847, 177dfa1a3b8627faf0425d9511bcb4c6ca986ea05e3803b5c643c35b94a7e6fe))", a[3].String())
}
func testCircuitParseWitnessBin(t *testing.T, circuit string) {
witnessBinFile, err := os.Open("../testdata/" + circuit + "/witness.bin")
require.Nil(t, err)
defer witnessBinFile.Close()
witness, err := ParseWitnessBin(witnessBinFile)
require.Nil(t, err)
witnessJson, err := ioutil.ReadFile("../testdata/" + circuit + "/witness.json")
require.Nil(t, err)
w, err := ParseWitness(witnessJson)
require.Nil(t, err)
assert.Equal(t, len(w), len(witness))
assert.Equal(t, w[0], witness[0])
assert.Equal(t, w[1], witness[1])
assert.Equal(t, w[10], witness[10])
assert.Equal(t, w[len(w)-3], witness[len(w)-3])
assert.Equal(t, w[len(w)-2], witness[len(w)-2])
assert.Equal(t, w[len(w)-1], witness[len(w)-1])
}
func TestParseWitnessBin(t *testing.T) {
testCircuitParseWitnessBin(t, "circuit1k")
testCircuitParseWitnessBin(t, "circuit5k")
}

Binary file not shown.

470
prover/gextra.go Normal file
View File

@@ -0,0 +1,470 @@
package prover
import (
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
cryptoConstants "github.com/iden3/go-iden3-crypto/constants"
"math/big"
)
type TableG1 struct {
data []*bn256.G1
}
func (t TableG1) GetData() []*bn256.G1 {
return t.data
}
// Compute table of gsize elements as ::
// Table[0] = Inf
// Table[1] = a[0]
// Table[2] = a[1]
// Table[3] = a[0]+a[1]
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
func (t *TableG1) NewTableG1(a []*bn256.G1, gsize int, toaffine bool) {
// EC table
table := make([]*bn256.G1, 0)
// We need at least gsize elements. If not enough, fill with 0
a_ext := make([]*bn256.G1, 0)
a_ext = append(a_ext, a...)
for i := len(a); i < gsize; i++ {
a_ext = append(a_ext, new(bn256.G1).ScalarBaseMult(big.NewInt(0)))
}
elG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
table = append(table, elG1)
last_pow2 := 1
nelems := 0
for i := 1; i < 1<<gsize; i++ {
elG1 := new(bn256.G1)
// if power of 2
if i&(i-1) == 0 {
last_pow2 = i
elG1.Set(a_ext[nelems])
nelems++
} else {
elG1.Add(table[last_pow2], table[i-last_pow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
table = append(table, elG1)
}
if toaffine {
for i := 0; i < len(table); i++ {
info := table[i].Marshal()
table[i].Unmarshal(info)
}
}
t.data = table
}
func (t TableG1) Marshal() []byte {
info := make([]byte, 0)
for _, el := range t.data {
info = append(info, el.Marshal()...)
}
return info
}
// Multiply scalar by precomputed table of G1 elements
func (t *TableG1) MulTableG1(k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < gsize; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
}
Q := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
msb := getMsb(k_ext)
for i := msb - 1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G1).Add(Q, Q)
b := getBit(k_ext, i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
}
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
min_nelems := len(t) * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
Q := make([]*bn256.G1, nbitsQ)
for i := 0; i < nbitsQ; i++ {
Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
}
// Perform bitwise addition
for j := 0; j < len(t); j++ {
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
}
}
}
// Consolidate Addition
R := new(bn256.G1).Set(Q[nbitsQ-1])
for i := nbitsQ - 1; i > 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G1).Add(R, R)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
}
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func ScalarMultG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG1{}
Q := new(bn256.G1).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
table.NewTableG1(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.MulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.NewTableG1(a[(ntables-1)*gsize:], gsize, false)
Q = table.MulTableG1(k[(ntables-1)*gsize:], Q, gsize)
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
}
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG1{}
// We need at least gsize elements. If not enough, fill with 0
min_nelems := ntables * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
Q := make([]*bn256.G1, nbitsQ)
for i := 0; i < nbitsQ; i++ {
Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
}
// Perform bitwise addition
for j := 0; j < ntables-1; j++ {
table.NewTableG1(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.NewTableG1(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(k_ext[(ntables-1)*gsize:])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[(ntables-1)*gsize:], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
// Consolidate Addition
R := new(bn256.G1).Set(Q[nbitsQ-1])
for i := nbitsQ - 1; i > 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G1).Add(R, R)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
}
}
/////
// TODO - How can avoid replicating code in G2?
//G2
type TableG2 struct {
data []*bn256.G2
}
func (t TableG2) GetData() []*bn256.G2 {
return t.data
}
// Compute table of gsize elements as ::
// Table[0] = Inf
// Table[1] = a[0]
// Table[2] = a[1]
// Table[3] = a[0]+a[1]
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
// TODO -> toaffine = True doesnt work. Problem with Marshal/Unmarshal
func (t *TableG2) NewTableG2(a []*bn256.G2, gsize int, toaffine bool) {
// EC table
table := make([]*bn256.G2, 0)
// We need at least gsize elements. If not enough, fill with 0
a_ext := make([]*bn256.G2, 0)
a_ext = append(a_ext, a...)
for i := len(a); i < gsize; i++ {
a_ext = append(a_ext, new(bn256.G2).ScalarBaseMult(big.NewInt(0)))
}
elG2 := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
table = append(table, elG2)
last_pow2 := 1
nelems := 0
for i := 1; i < 1<<gsize; i++ {
elG2 := new(bn256.G2)
// if power of 2
if i&(i-1) == 0 {
last_pow2 = i
elG2.Set(a_ext[nelems])
nelems++
} else {
elG2.Add(table[last_pow2], table[i-last_pow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
table = append(table, elG2)
}
if toaffine {
for i := 0; i < len(table); i++ {
info := table[i].Marshal()
table[i].Unmarshal(info)
}
}
t.data = table
}
func (t TableG2) Marshal() []byte {
info := make([]byte, 0)
for _, el := range t.data {
info = append(info, el.Marshal()...)
}
return info
}
// Multiply scalar by precomputed table of G2 elements
func (t *TableG2) MulTableG2(k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < gsize; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
}
Q := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
msb := getMsb(k_ext)
for i := msb - 1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G2).Add(Q, Q)
b := getBit(k_ext, i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
}
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
min_nelems := len(t) * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
Q := make([]*bn256.G2, nbitsQ)
for i := 0; i < nbitsQ; i++ {
Q[i] = new(bn256.G2).ScalarBaseMult(big.NewInt(0))
}
// Perform bitwise addition
for j := 0; j < len(t); j++ {
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
}
}
}
// Consolidate Addition
R := new(bn256.G2).Set(Q[nbitsQ-1])
for i := nbitsQ - 1; i > 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G2).Add(R, R)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
}
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func ScalarMultG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG2{}
Q := new(bn256.G2).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
table.NewTableG2(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.MulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.NewTableG2(a[(ntables-1)*gsize:], gsize, false)
Q = table.MulTableG2(k[(ntables-1)*gsize:], Q, gsize)
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
}
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG2{}
// We need at least gsize elements. If not enough, fill with 0
min_nelems := ntables * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
Q := make([]*bn256.G2, nbitsQ)
for i := 0; i < nbitsQ; i++ {
Q[i] = new(bn256.G2).ScalarBaseMult(big.NewInt(0))
}
// Perform bitwise addition
for j := 0; j < ntables-1; j++ {
table.NewTableG2(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.NewTableG2(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(k_ext[(ntables-1)*gsize:])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[(ntables-1)*gsize:], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
// Consolidate Addition
R := new(bn256.G2).Set(Q[nbitsQ-1])
for i := nbitsQ - 1; i > 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G2).Add(R, R)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
}
}
// Return most significant bit position in a group of Big Integers
func getMsb(k []*big.Int) int {
msb := 0
for _, el := range k {
tmp_msb := el.BitLen()
if tmp_msb > msb {
msb = tmp_msb
}
}
return msb
}
// Return ith bit in group of Big Integers
func getBit(k []*big.Int, i int) uint {
table_idx := uint(0)
for idx, el := range k {
b := el.Bit(i)
table_idx += (b << idx)
}
return table_idx
}

162
prover/gextra_test.go Normal file
View File

@@ -0,0 +1,162 @@
package prover
import (
"bytes"
"crypto/rand"
"fmt"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
"math/big"
"testing"
"time"
)
const (
N1 = 5000
N2 = 5000
)
func randomBigIntArray(n int) []*big.Int {
var p []*big.Int
for i := 0; i < n; i++ {
pi := randBI()
p = append(p, pi)
}
return p
}
func randomG1Array(n int) []*bn256.G1 {
arrayG1 := make([]*bn256.G1, n)
for i := 0; i < n; i++ {
_, arrayG1[i], _ = bn256.RandomG1(rand.Reader)
}
return arrayG1
}
func randomG2Array(n int) []*bn256.G2 {
arrayG2 := make([]*bn256.G2, n)
for i := 0; i < n; i++ {
_, arrayG2[i], _ = bn256.RandomG2(rand.Reader)
}
return arrayG2
}
func TestTableG1(t *testing.T) {
n := N1
// init scalar
var arrayW = randomBigIntArray(n)
// init G1 array
var arrayG1 = randomG1Array(n)
beforeT := time.Now()
Q1 := new(bn256.G1).ScalarBaseMult(new(big.Int))
for i := 0; i < n; i++ {
Q1.Add(Q1, new(bn256.G1).ScalarMult(arrayG1[i], arrayW[i]))
}
fmt.Println("Std. Mult. time elapsed:", time.Since(beforeT))
for gsize := 2; gsize < 10; gsize++ {
ntables := int((n + gsize - 1) / gsize)
table := make([]TableG1, ntables)
for i := 0; i < ntables-1; i++ {
table[i].NewTableG1(arrayG1[i*gsize:(i+1)*gsize], gsize, true)
}
table[ntables-1].NewTableG1(arrayG1[(ntables-1)*gsize:], gsize, true)
beforeT = time.Now()
Q2 := new(bn256.G1).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
Q2 = table[i].MulTableG1(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
}
Q2 = table[ntables-1].MulTableG1(arrayW[(ntables-1)*gsize:], Q2, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q3 := ScalarMultG1(arrayG1, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q4 := MulTableNoDoubleG1(table, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q5 := ScalarMultNoDoubleG1(arrayG1, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
if bytes.Compare(Q1.Marshal(), Q2.Marshal()) != 0 {
t.Error("Error in TMult")
}
if bytes.Compare(Q1.Marshal(), Q3.Marshal()) != 0 {
t.Error("Error in TMult with table comp")
}
if bytes.Compare(Q1.Marshal(), Q4.Marshal()) != 0 {
t.Error("Error in TMultNoDouble")
}
if bytes.Compare(Q1.Marshal(), Q5.Marshal()) != 0 {
t.Error("Error in TMultNoDoublee with table comp")
}
}
}
func TestTableG2(t *testing.T) {
n := N2
// init scalar
var arrayW = randomBigIntArray(n)
// init G2 array
var arrayG2 = randomG2Array(n)
beforeT := time.Now()
Q1 := new(bn256.G2).ScalarBaseMult(new(big.Int))
for i := 0; i < n; i++ {
Q1.Add(Q1, new(bn256.G2).ScalarMult(arrayG2[i], arrayW[i]))
}
fmt.Println("Std. Mult. time elapsed:", time.Since(beforeT))
for gsize := 2; gsize < 10; gsize++ {
ntables := int((n + gsize - 1) / gsize)
table := make([]TableG2, ntables)
for i := 0; i < ntables-1; i++ {
table[i].NewTableG2(arrayG2[i*gsize:(i+1)*gsize], gsize, false)
}
table[ntables-1].NewTableG2(arrayG2[(ntables-1)*gsize:], gsize, false)
beforeT = time.Now()
Q2 := new(bn256.G2).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
Q2 = table[i].MulTableG2(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
}
Q2 = table[ntables-1].MulTableG2(arrayW[(ntables-1)*gsize:], Q2, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q3 := ScalarMultG2(arrayG2, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q4 := MulTableNoDoubleG2(table, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q5 := ScalarMultNoDoubleG2(arrayG2, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
if bytes.Compare(Q1.Marshal(), Q2.Marshal()) != 0 {
t.Error("Error in TMult")
}
if bytes.Compare(Q1.Marshal(), Q3.Marshal()) != 0 {
t.Error("Error in TMult with table comp")
}
if bytes.Compare(Q1.Marshal(), Q4.Marshal()) != 0 {
t.Error("Error in TMultNoDouble")
}
if bytes.Compare(Q1.Marshal(), Q5.Marshal()) != 0 {
t.Error("Error in TMultNoDoublee with table comp")
}
}
}

View File

@@ -10,6 +10,7 @@ import (
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
"github.com/iden3/go-circom-prover-verifier/types"
"github.com/iden3/go-iden3-crypto/utils"
//"fmt"
)
// Proof is the data structure of the Groth16 zkSNARK proof
@@ -42,6 +43,11 @@ type Pk struct {
// Witness contains the witness
type Witness []*big.Int
// Group Size
const (
GSIZE = 6
)
func randBigInt() (*big.Int, error) {
maxbits := types.R.BitLen()
b := make([]byte, (maxbits/8)-1)
@@ -68,26 +74,40 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
return nil, nil, err
}
// BEGIN PAR
numcpu := runtime.NumCPU()
proofA := arrayOfZeroesG1(numcpu)
proofB := arrayOfZeroesG2(numcpu)
proofC := arrayOfZeroesG1(numcpu)
proofBG1 := arrayOfZeroesG1(numcpu)
gsize := GSIZE
var wg1 sync.WaitGroup
wg1.Add(numcpu)
for _cpu, _ranges := range ranges(pk.NVars, numcpu) {
// split 1
go func(cpu int, ranges [2]int) {
tmpG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
tmpG2 := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
for i := ranges[0]; i < ranges[1]; i++ {
proofA[cpu].Add(proofA[cpu], tmpG1.ScalarMult(pk.A[i], w[i]))
proofB[cpu].Add(proofB[cpu], tmpG2.ScalarMult(pk.B2[i], w[i]))
proofBG1[cpu].Add(proofBG1[cpu], tmpG1.ScalarMult(pk.B1[i], w[i]))
if i >= pk.NPublic+1 {
proofC[cpu].Add(proofC[cpu], tmpG1.ScalarMult(pk.C[i], w[i]))
proofA[cpu] = ScalarMultNoDoubleG1(pk.A[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofA[cpu],
gsize)
proofB[cpu] = ScalarMultNoDoubleG2(pk.B2[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofB[cpu],
gsize)
proofBG1[cpu] = ScalarMultNoDoubleG1(pk.B1[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofBG1[cpu],
gsize)
min_lim := pk.NPublic+1
if ranges[0] > pk.NPublic+1 {
min_lim = ranges[0]
}
if ranges[1] > pk.NPublic + 1 {
proofC[cpu] = ScalarMultNoDoubleG1(pk.C[min_lim:ranges[1]],
w[min_lim:ranges[1]],
proofC[cpu],
gsize)
}
wg1.Done()
}(_cpu, _ranges)
@@ -103,11 +123,10 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
proof.A = proofA[0]
proof.B = proofB[0]
proof.C = proofC[0]
// END PAR
h := calculateH(pk, w)
println("len(h)", len(h))
proof.A.Add(proof.A, pk.VkAlpha1)
proof.A.Add(proof.A, new(bn256.G1).ScalarMult(pk.VkDelta1, r))
@@ -123,10 +142,10 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
for _cpu, _ranges := range ranges(len(h), numcpu) {
// split 2
go func(cpu int, ranges [2]int) {
tmpG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
for i := ranges[0]; i < ranges[1]; i++ {
proofC[cpu].Add(proofC[cpu], tmpG1.ScalarMult(pk.HExps[i], h[i]))
}
proofC[cpu] = ScalarMultNoDoubleG1(pk.HExps[ranges[0]:ranges[1]],
h[ranges[0]:ranges[1]],
proofC[cpu],
gsize)
wg2.Done()
}(_cpu, _ranges)
}
@@ -139,7 +158,7 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
proof.C.Add(proof.C, new(bn256.G1).ScalarMult(proof.A, s))
proof.C.Add(proof.C, new(bn256.G1).ScalarMult(proofBG1[0], r))
rsneg := new(big.Int).Mod(new(big.Int).Neg(new(big.Int).Mul(r, s)), types.R) // fAdd & fMul
rsneg := new(big.Int).Mod(new(big.Int).Neg(new(big.Int).Mul(r, s)), types.R)
proof.C.Add(proof.C, new(bn256.G1).ScalarMult(pk.VkDelta1, rsneg))
pubSignals := w[1 : pk.NPublic+1]
@@ -152,14 +171,27 @@ func calculateH(pk *types.Pk, w types.Witness) []*big.Int {
polAT := arrayOfZeroes(m)
polBT := arrayOfZeroes(m)
numcpu := runtime.NumCPU()
var wg1 sync.WaitGroup
wg1.Add(2)
go func() {
for i := 0; i < pk.NVars; i++ {
for j := range pk.PolsA[i] {
polAT[j] = fAdd(polAT[j], fMul(w[i], pk.PolsA[i][j]))
}
}
wg1.Done()
}()
go func() {
for i := 0; i < pk.NVars; i++ {
for j := range pk.PolsB[i] {
polBT[j] = fAdd(polBT[j], fMul(w[i], pk.PolsB[i][j]))
}
}
wg1.Done()
}()
wg1.Wait()
polATe := utils.BigIntArrayToElementArray(polAT)
polBTe := utils.BigIntArrayToElementArray(polBT)
@@ -170,19 +202,35 @@ func calculateH(pk *types.Pk, w types.Witness) []*big.Int {
roots := newRootsT()
roots.setRoots(r)
for i := 0; i < len(polASe); i++ {
var wg2 sync.WaitGroup
wg2.Add(numcpu)
for _cpu, _ranges := range ranges(len(polASe), numcpu) {
go func(cpu int, ranges [2]int) {
for i := ranges[0]; i < ranges[1]; i++ {
polASe[i].Mul(polASe[i], roots.roots[r][i])
polBSe[i].Mul(polBSe[i], roots.roots[r][i])
}
wg2.Done()
}(_cpu, _ranges)
}
wg2.Wait()
polATodd := fft(polASe)
polBTodd := fft(polBSe)
polABT := arrayOfZeroesE(len(polASe) * 2)
for i := 0; i < len(polASe); i++ {
var wg3 sync.WaitGroup
wg3.Add(numcpu)
for _cpu, _ranges := range ranges(len(polASe), numcpu) {
go func(cpu int, ranges [2]int) {
for i := ranges[0]; i < ranges[1]; i++ {
polABT[2*i].Mul(polATe[i], polBTe[i])
polABT[2*i+1].Mul(polATodd[i], polBTodd[i])
}
wg3.Done()
}(_cpu, _ranges)
}
wg3.Wait()
hSeFull := ifft(polABT)

Binary file not shown.

View File

@@ -61,12 +61,12 @@ func testCircuitGenerateProof(t *testing.T, circuit string) {
func BenchmarkGenerateProof(b *testing.B) {
// benchmark with a circuit of 10000 constraints
provingKeyJson, err := ioutil.ReadFile("../testdata/circuit1/proving_key.json")
provingKeyJson, err := ioutil.ReadFile("../testdata/circuit5k/proving_key.json")
require.Nil(b, err)
pk, err := parsers.ParsePk(provingKeyJson)
require.Nil(b, err)
witnessJson, err := ioutil.ReadFile("../testdata/circuit1/witness.json")
witnessJson, err := ioutil.ReadFile("../testdata/circuit5k/witness.json")
require.Nil(b, err)
w, err := parsers.ParseWitness(witnessJson)
require.Nil(b, err)

49
prover/tables.md Normal file
View File

@@ -0,0 +1,49 @@
# Tables Pre-calculation
The most time consuming part of a ZKSnark proof calculation is the scalar multiplication of elliptic curve points. Direct mechanism accumulates each multiplication. However, prover only needs the total accumulation.
There are two potential improvements to the naive approach:
1. Apply Strauss-Shamir method (https://stackoverflow.com/questions/50993471/ec-scalar-multiplication-with-strauss-shamir-method).
2. Leave the doubling operation for the last step
Both options can be combined.
In the following table, we show the results of using the naive method, Srauss-Shamir and Strauss-Shamir + No doubling. These last two options are repeated for different table grouping order.
There are 50000 G1 Elliptical Curve Points, and the scalars are 254 bits (BN256 curve).
There may be some concern on the additional size of the tables since they need to be loaded into a smartphone during the proof, and the time required to load these tables may exceed the benefits. If this is a problem, another althernative is to compute the tables during the proof itself. Depending on the Group Size, timing may be better than the naive approach.
| Algorithm (G1) | GS 2 | GS 3 | GS 4 | GS 5 | GS 6 | GS 7 | GS 8 | GS 9 |
|---|---|---|--|---|---|---|---|---|
| Naive | 6.63s | - | - | - | - | - | - | - |
| Strauss | 13.16s | 9.03s | 6.95s | 5.61s | 4.91s | 4.26s | 3.88s | 3.54 s |
| Strauss + Table Computation | 16.13s | 11.32s | 8.47s | 7.10s | 6.2s | 5.94s | 6.01s | 6.69s |
| No Doubling | 3.74s | 3.00s | 2.38s | 1.96s | 1.79s | 1.54s | 1.50s | 1.44s|
| No Doubling + Table Computation | 6.83s | 5.1s | 4.16s | 3.52s| 3.22s | 3.21s | 3.57s | 4.56s |
There are 5000 G2 Elliptical Curve Points, and the scalars are 254 bits (BN256 curve).
| Algorithm (G2) | GS 2 | GS 3 | GS 4 | GS 5 | GS 6 | GS 7 | GS 8 | GS 9 |
|---|---|---|--|---|---|---|---|---|
| Naive | 3.55s | | | | | | | |
| Strauss | 3.55s | 2.54s | 1.96s | 1.58s | 1.38s | 1.20s | 1.03s | 937ms |
| Strauss + Table Computation | 3.59s | 2.58s | 2.04s | 1.71s | 1.51s | 1.46s | 1.51s | 1.82s |
| No Doubling | 1.49s | 1.16s | 952ms | 719ms | 661ms | 548ms | 506ms| 444ms |
| No Doubling + Table Computation | 1.55s | 1.21s | 984ms | 841ms | 826ms | 847ms | 1.03s | 1.39s |
| GS | Extra Disk Space per Constraint (G1)|
|----|--------|
| 2 | 64 B |
| 3 | 106 B |
| 4 | 192 B |
| 5 | 346 B |
| 6 | 618 B |
| 7 | 1106 B |
| 8 | 1984 B |
| 9 | 3577 B |
| N | 2^(N+6)/N - 64 B |
Extra disk space per constraint in G2 is twice the requirements for G1

View File

@@ -1,5 +1,7 @@
#!/bin/sh
npm install
compile_and_ts_and_witness() {
echo $(date +"%T") "circom circuit.circom --r1cs --wasm --sym"
itime="$(date -u +%s)"
@@ -40,3 +42,22 @@ compile_and_ts_and_witness
# echo "compile & trustesetup for circuit20k"
# cd ../circuit20k
# compile_and_ts_and_witness
cd ../
echo "convert witness & pk of circuit1k to bin"
node node_modules/wasmsnark/tools/buildwitness.js -i circuit1k/witness.json -o circuit1k/witness.bin
node node_modules/wasmsnark/tools/buildpkey.js -i circuit1k/proving_key.json -o circuit1k/proving_key.bin
echo "convert witness & pk of circuit5k to bin"
node node_modules/wasmsnark/tools/buildwitness.js -i circuit5k/witness.json -o circuit5k/witness.bin
node node_modules/wasmsnark/tools/buildpkey.js -i circuit5k/proving_key.json -o circuit5k/proving_key.bin
# echo "convert witness & pk of circuit10k to bin"
# node node_modules/wasmsnark/tools/buildwitness.js -i circuit10k/witness.json -o circuit10k/witness.bin
# node node_modules/wasmsnark/tools/buildpkey.js -i circuit10k/proving_key.json -o circuit10k/proving_key.bin
#
# echo "convert witness & pk of circuit20k to bin"
# node node_modules/wasmsnark/tools/buildwitness.js -i circuit20k/witness.json -o circuit20k/witness.bin
# node node_modules/wasmsnark/tools/buildpkey.js -i circuit20k/proving_key.json -o circuit20k/proving_key.bin

18
testdata/package-lock.json generated vendored
View File

@@ -1,6 +1,8 @@
{
"requires": true,
"name": "binformat",
"version": "0.0.1",
"lockfileVersion": 1,
"requires": true,
"dependencies": {
"@types/color-name": {
"version": "1.1.1",
@@ -40,6 +42,11 @@
"resolved": "https://registry.npmjs.org/big-integer/-/big-integer-1.6.48.tgz",
"integrity": "sha512-j51egjPa7/i+RdiRuJbPdJ2FIUYYPhvYLjzoYbcMMm62ooO6F94fETG4MTs46zPAF9Brs04OajboA/qTGuz78w=="
},
"blakejs": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/blakejs/-/blakejs-1.1.0.tgz",
"integrity": "sha1-ad+S75U6qIylGjLfarHFShVfx6U="
},
"brace-expansion": {
"version": "1.1.11",
"resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.11.tgz",
@@ -819,6 +826,15 @@
"big-integer": "^1.6.48"
}
},
"wasmsnark": {
"version": "0.0.10",
"resolved": "https://registry.npmjs.org/wasmsnark/-/wasmsnark-0.0.10.tgz",
"integrity": "sha512-ARrJWhxvnBJXMERwBcnEnO5ByLwYhJZr1xwac9dl61SN7+1eOmG7Od3SJL1GzU6zaf86b9wza20y1d5ThCecLw==",
"requires": {
"big-integer": "^1.6.42",
"blakejs": "^1.1.0"
}
},
"which": {
"version": "1.3.1",
"resolved": "https://registry.npmjs.org/which/-/which-1.3.1.tgz",

16
testdata/package.json vendored Normal file
View File

@@ -0,0 +1,16 @@
{
"name": "binformat",
"version": "0.0.1",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "",
"license": "GPL-3.0",
"dependencies": {
"wasmsnark": "0.0.10",
"circom": "^0.5.11",
"snarkjs": "^0.1.31"
}
}

View File

@@ -17,6 +17,7 @@ type Vk struct {
IC []*bn256.G1
}
// Verify verifies the Groth16 zkSNARK proof
func Verify(vk *types.Vk, proof *types.Proof, inputs []*big.Int) bool {
if len(inputs)+1 != len(vk.IC) {
fmt.Println("len(inputs)+1 != len(vk.IC)")