mirror of
https://github.com/arnaucube/go-circom-prover-verifier.git
synced 2026-02-07 03:16:46 +01:00
Compare commits
5 Commits
feature/ta
...
feature/pr
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0d4e2581bd | ||
|
|
1aa316cbd2 | ||
|
|
0f48cfa2a5 | ||
|
|
6ec118d4e2 | ||
|
|
423d5f0ce7 |
@@ -467,8 +467,35 @@ func stringToG2(h [][]string) (*bn256.G2, error) {
|
||||
return p, err
|
||||
}
|
||||
|
||||
// ProofToJson outputs the Proof i Json format
|
||||
func ProofToJson(p *types.Proof) ([]byte, error) {
|
||||
// ProofStringToSmartContractFormat converts the ProofString to a ProofString in the SmartContract format in a ProofString structure
|
||||
func ProofStringToSmartContractFormat(s ProofString) ProofString {
|
||||
var rs ProofString
|
||||
rs.A = make([]string, 2)
|
||||
rs.B = make([][]string, 2)
|
||||
rs.B[0] = make([]string, 2)
|
||||
rs.B[1] = make([]string, 2)
|
||||
rs.C = make([]string, 2)
|
||||
|
||||
rs.A[0] = s.A[0]
|
||||
rs.A[1] = s.A[1]
|
||||
rs.B[0][0] = s.B[0][1]
|
||||
rs.B[0][1] = s.B[0][0]
|
||||
rs.B[1][0] = s.B[1][1]
|
||||
rs.B[1][1] = s.B[1][0]
|
||||
rs.C[0] = s.C[0]
|
||||
rs.C[1] = s.C[1]
|
||||
rs.Protocol = s.Protocol
|
||||
return rs
|
||||
}
|
||||
|
||||
// ProofToSmartContractFormat converts the *types.Proof to a ProofString in the SmartContract format in a ProofString structure
|
||||
func ProofToSmartContractFormat(p *types.Proof) ProofString {
|
||||
s := ProofToString(p)
|
||||
return ProofStringToSmartContractFormat(s)
|
||||
}
|
||||
|
||||
// ProofToString converts the Proof to ProofString
|
||||
func ProofToString(p *types.Proof) ProofString {
|
||||
var ps ProofString
|
||||
ps.A = make([]string, 3)
|
||||
ps.B = make([][]string, 3)
|
||||
@@ -497,10 +524,55 @@ func ProofToJson(p *types.Proof) ([]byte, error) {
|
||||
|
||||
ps.Protocol = "groth"
|
||||
|
||||
return ps
|
||||
}
|
||||
|
||||
// ProofToJson outputs the Proof i Json format
|
||||
func ProofToJson(p *types.Proof) ([]byte, error) {
|
||||
ps := ProofToString(p)
|
||||
return json.Marshal(ps)
|
||||
}
|
||||
|
||||
// ParseWitness parses binary file representation of the Witness into the Witness struct
|
||||
// ProofToHex converts the Proof to ProofString with hexadecimal strings
|
||||
func ProofToHex(p *types.Proof) ProofString {
|
||||
var ps ProofString
|
||||
ps.A = make([]string, 3)
|
||||
ps.B = make([][]string, 3)
|
||||
ps.B[0] = make([]string, 2)
|
||||
ps.B[1] = make([]string, 2)
|
||||
ps.B[2] = make([]string, 2)
|
||||
ps.C = make([]string, 3)
|
||||
|
||||
a := p.A.Marshal()
|
||||
ps.A[0] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(a[:32]).Bytes())
|
||||
ps.A[1] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(a[32:64]).Bytes())
|
||||
ps.A[2] = "1"
|
||||
|
||||
b := p.B.Marshal()
|
||||
ps.B[0][1] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(b[:32]).Bytes())
|
||||
ps.B[0][0] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(b[32:64]).Bytes())
|
||||
ps.B[1][1] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(b[64:96]).Bytes())
|
||||
ps.B[1][0] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(b[96:128]).Bytes())
|
||||
ps.B[2][0] = "1"
|
||||
ps.B[2][1] = "0"
|
||||
|
||||
c := p.C.Marshal()
|
||||
ps.C[0] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(c[:32]).Bytes())
|
||||
ps.C[1] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(c[32:64]).Bytes())
|
||||
ps.C[2] = "1"
|
||||
|
||||
ps.Protocol = "groth"
|
||||
|
||||
return ps
|
||||
}
|
||||
|
||||
// ProofToJsonHex outputs the Proof i Json format with hexadecimal strings
|
||||
func ProofToJsonHex(p *types.Proof) ([]byte, error) {
|
||||
ps := ProofToHex(p)
|
||||
return json.Marshal(ps)
|
||||
}
|
||||
|
||||
// ParseWitnessBin parses binary file representation of the Witness into the Witness struct
|
||||
func ParseWitnessBin(f *os.File) (types.Witness, error) {
|
||||
var w types.Witness
|
||||
r := bufio.NewReader(f)
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
package parsers
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"io/ioutil"
|
||||
"os"
|
||||
"testing"
|
||||
|
||||
"github.com/iden3/go-circom-prover-verifier/types"
|
||||
"github.com/stretchr/testify/assert"
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
@@ -172,3 +174,40 @@ func TestParseWitnessBin(t *testing.T) {
|
||||
testCircuitParseWitnessBin(t, "circuit1k")
|
||||
testCircuitParseWitnessBin(t, "circuit5k")
|
||||
}
|
||||
|
||||
func TestProofSmartContractFormat(t *testing.T) {
|
||||
proofJson, err := ioutil.ReadFile("../testdata/circuit1k/proof.json")
|
||||
require.Nil(t, err)
|
||||
proof, err := ParseProof(proofJson)
|
||||
require.Nil(t, err)
|
||||
pS := ProofToString(proof)
|
||||
|
||||
pSC := ProofToSmartContractFormat(proof)
|
||||
assert.Nil(t, err)
|
||||
assert.Equal(t, pS.A[0], pSC.A[0])
|
||||
assert.Equal(t, pS.A[1], pSC.A[1])
|
||||
assert.Equal(t, pS.B[0][0], pSC.B[0][1])
|
||||
assert.Equal(t, pS.B[0][1], pSC.B[0][0])
|
||||
assert.Equal(t, pS.B[1][0], pSC.B[1][1])
|
||||
assert.Equal(t, pS.B[1][1], pSC.B[1][0])
|
||||
assert.Equal(t, pS.C[0], pSC.C[0])
|
||||
assert.Equal(t, pS.C[1], pSC.C[1])
|
||||
assert.Equal(t, pS.Protocol, pSC.Protocol)
|
||||
|
||||
pSC2 := ProofStringToSmartContractFormat(pS)
|
||||
assert.Equal(t, pSC, pSC2)
|
||||
}
|
||||
|
||||
func TestProofJSON(t *testing.T) {
|
||||
proofJson, err := ioutil.ReadFile("../testdata/circuit1k/proof.json")
|
||||
require.Nil(t, err)
|
||||
proof, err := ParseProof(proofJson)
|
||||
require.Nil(t, err)
|
||||
|
||||
proof1JSON, err := json.Marshal(proof)
|
||||
require.Nil(t, err)
|
||||
var proof1 types.Proof
|
||||
err = json.Unmarshal(proof1JSON, &proof1)
|
||||
require.Nil(t, err)
|
||||
require.Equal(t, *proof, proof1)
|
||||
}
|
||||
|
||||
463
prover/gextra.go
Normal file
463
prover/gextra.go
Normal file
@@ -0,0 +1,463 @@
|
||||
package prover
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
|
||||
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
|
||||
cryptoConstants "github.com/iden3/go-iden3-crypto/constants"
|
||||
)
|
||||
|
||||
type tableG1 struct {
|
||||
data []*bn256.G1
|
||||
}
|
||||
|
||||
func (t tableG1) getData() []*bn256.G1 {
|
||||
return t.data
|
||||
}
|
||||
|
||||
// Compute table of gsize elements as ::
|
||||
// Table[0] = Inf
|
||||
// Table[1] = a[0]
|
||||
// Table[2] = a[1]
|
||||
// Table[3] = a[0]+a[1]
|
||||
// .....
|
||||
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
|
||||
func (t *tableG1) newTableG1(a []*bn256.G1, gsize int, toaffine bool) {
|
||||
// EC table
|
||||
table := make([]*bn256.G1, 0)
|
||||
|
||||
// We need at least gsize elements. If not enough, fill with 0
|
||||
aExt := make([]*bn256.G1, 0)
|
||||
aExt = append(aExt, a...)
|
||||
|
||||
for i := len(a); i < gsize; i++ {
|
||||
aExt = append(aExt, new(bn256.G1).ScalarBaseMult(big.NewInt(0)))
|
||||
}
|
||||
|
||||
elG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
|
||||
table = append(table, elG1)
|
||||
lastPow2 := 1
|
||||
nelems := 0
|
||||
for i := 1; i < 1<<gsize; i++ {
|
||||
elG1 := new(bn256.G1)
|
||||
// if power of 2
|
||||
if i&(i-1) == 0 {
|
||||
lastPow2 = i
|
||||
elG1.Set(aExt[nelems])
|
||||
nelems++
|
||||
} else {
|
||||
elG1.Add(table[lastPow2], table[i-lastPow2])
|
||||
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
|
||||
//table[i].MakeAffine()
|
||||
}
|
||||
table = append(table, elG1)
|
||||
}
|
||||
if toaffine {
|
||||
for i := 0; i < len(table); i++ {
|
||||
info := table[i].Marshal()
|
||||
table[i].Unmarshal(info)
|
||||
}
|
||||
}
|
||||
t.data = table
|
||||
}
|
||||
|
||||
func (t tableG1) Marshal() []byte {
|
||||
info := make([]byte, 0)
|
||||
for _, el := range t.data {
|
||||
info = append(info, el.Marshal()...)
|
||||
}
|
||||
|
||||
return info
|
||||
}
|
||||
|
||||
// Multiply scalar by precomputed table of G1 elements
|
||||
func (t *tableG1) mulTableG1(k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
|
||||
// We need at least gsize elements. If not enough, fill with 0
|
||||
kExt := make([]*big.Int, 0)
|
||||
kExt = append(kExt, k...)
|
||||
|
||||
for i := len(k); i < gsize; i++ {
|
||||
kExt = append(kExt, new(big.Int).SetUint64(0))
|
||||
}
|
||||
|
||||
Q := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
|
||||
|
||||
msb := getMsb(kExt)
|
||||
|
||||
for i := msb - 1; i >= 0; i-- {
|
||||
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
||||
Q = new(bn256.G1).Add(Q, Q)
|
||||
b := getBit(kExt, i)
|
||||
if b != 0 {
|
||||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
||||
Q.Add(Q, t.data[b])
|
||||
}
|
||||
}
|
||||
if qPrev != nil {
|
||||
return Q.Add(Q, qPrev)
|
||||
}
|
||||
return Q
|
||||
}
|
||||
|
||||
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
|
||||
func mulTableNoDoubleG1(t []tableG1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
|
||||
// We need at least gsize elements. If not enough, fill with 0
|
||||
minNElems := len(t) * gsize
|
||||
kExt := make([]*big.Int, 0)
|
||||
kExt = append(kExt, k...)
|
||||
for i := len(k); i < minNElems; i++ {
|
||||
kExt = append(kExt, new(big.Int).SetUint64(0))
|
||||
}
|
||||
// Init Adders
|
||||
nbitsQ := cryptoConstants.Q.BitLen()
|
||||
Q := make([]*bn256.G1, nbitsQ)
|
||||
|
||||
for i := 0; i < nbitsQ; i++ {
|
||||
Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
|
||||
}
|
||||
|
||||
// Perform bitwise addition
|
||||
for j := 0; j < len(t); j++ {
|
||||
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
|
||||
|
||||
for i := msb - 1; i >= 0; i-- {
|
||||
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
|
||||
if b != 0 {
|
||||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
||||
Q[i].Add(Q[i], t[j].data[b])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Consolidate Addition
|
||||
R := new(bn256.G1).Set(Q[nbitsQ-1])
|
||||
for i := nbitsQ - 1; i > 0; i-- {
|
||||
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
||||
R = new(bn256.G1).Add(R, R)
|
||||
R.Add(R, Q[i-1])
|
||||
}
|
||||
|
||||
if qPrev != nil {
|
||||
return R.Add(R, qPrev)
|
||||
}
|
||||
return R
|
||||
}
|
||||
|
||||
// Compute tables within function. This solution should still be faster than std multiplication
|
||||
// for gsize = 7
|
||||
func scalarMultG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
|
||||
ntables := int((len(a) + gsize - 1) / gsize)
|
||||
table := tableG1{}
|
||||
Q := new(bn256.G1).ScalarBaseMult(new(big.Int))
|
||||
|
||||
for i := 0; i < ntables-1; i++ {
|
||||
table.newTableG1(a[i*gsize:(i+1)*gsize], gsize, false)
|
||||
Q = table.mulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize)
|
||||
}
|
||||
table.newTableG1(a[(ntables-1)*gsize:], gsize, false)
|
||||
Q = table.mulTableG1(k[(ntables-1)*gsize:], Q, gsize)
|
||||
|
||||
if qPrev != nil {
|
||||
return Q.Add(Q, qPrev)
|
||||
}
|
||||
return Q
|
||||
}
|
||||
|
||||
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
|
||||
func scalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
|
||||
ntables := int((len(a) + gsize - 1) / gsize)
|
||||
table := tableG1{}
|
||||
|
||||
// We need at least gsize elements. If not enough, fill with 0
|
||||
minNElems := ntables * gsize
|
||||
kExt := make([]*big.Int, 0)
|
||||
kExt = append(kExt, k...)
|
||||
for i := len(k); i < minNElems; i++ {
|
||||
kExt = append(kExt, new(big.Int).SetUint64(0))
|
||||
}
|
||||
// Init Adders
|
||||
nbitsQ := cryptoConstants.Q.BitLen()
|
||||
Q := make([]*bn256.G1, nbitsQ)
|
||||
|
||||
for i := 0; i < nbitsQ; i++ {
|
||||
Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
|
||||
}
|
||||
|
||||
// Perform bitwise addition
|
||||
for j := 0; j < ntables-1; j++ {
|
||||
table.newTableG1(a[j*gsize:(j+1)*gsize], gsize, false)
|
||||
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
|
||||
|
||||
for i := msb - 1; i >= 0; i-- {
|
||||
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
|
||||
if b != 0 {
|
||||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
||||
Q[i].Add(Q[i], table.data[b])
|
||||
}
|
||||
}
|
||||
}
|
||||
table.newTableG1(a[(ntables-1)*gsize:], gsize, false)
|
||||
msb := getMsb(kExt[(ntables-1)*gsize:])
|
||||
|
||||
for i := msb - 1; i >= 0; i-- {
|
||||
b := getBit(kExt[(ntables-1)*gsize:], i)
|
||||
if b != 0 {
|
||||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
||||
Q[i].Add(Q[i], table.data[b])
|
||||
}
|
||||
}
|
||||
|
||||
// Consolidate Addition
|
||||
R := new(bn256.G1).Set(Q[nbitsQ-1])
|
||||
for i := nbitsQ - 1; i > 0; i-- {
|
||||
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
||||
R = new(bn256.G1).Add(R, R)
|
||||
R.Add(R, Q[i-1])
|
||||
}
|
||||
if qPrev != nil {
|
||||
return R.Add(R, qPrev)
|
||||
}
|
||||
return R
|
||||
}
|
||||
|
||||
/////
|
||||
|
||||
// TODO - How can avoid replicating code in G2?
|
||||
//G2
|
||||
|
||||
type tableG2 struct {
|
||||
data []*bn256.G2
|
||||
}
|
||||
|
||||
func (t tableG2) getData() []*bn256.G2 {
|
||||
return t.data
|
||||
}
|
||||
|
||||
// Compute table of gsize elements as ::
|
||||
// Table[0] = Inf
|
||||
// Table[1] = a[0]
|
||||
// Table[2] = a[1]
|
||||
// Table[3] = a[0]+a[1]
|
||||
// .....
|
||||
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
|
||||
// TODO -> toaffine = True doesnt work. Problem with Marshal/Unmarshal
|
||||
func (t *tableG2) newTableG2(a []*bn256.G2, gsize int, toaffine bool) {
|
||||
// EC table
|
||||
table := make([]*bn256.G2, 0)
|
||||
|
||||
// We need at least gsize elements. If not enough, fill with 0
|
||||
aExt := make([]*bn256.G2, 0)
|
||||
aExt = append(aExt, a...)
|
||||
|
||||
for i := len(a); i < gsize; i++ {
|
||||
aExt = append(aExt, new(bn256.G2).ScalarBaseMult(big.NewInt(0)))
|
||||
}
|
||||
|
||||
elG2 := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
|
||||
table = append(table, elG2)
|
||||
lastPow2 := 1
|
||||
nelems := 0
|
||||
for i := 1; i < 1<<gsize; i++ {
|
||||
elG2 := new(bn256.G2)
|
||||
// if power of 2
|
||||
if i&(i-1) == 0 {
|
||||
lastPow2 = i
|
||||
elG2.Set(aExt[nelems])
|
||||
nelems++
|
||||
} else {
|
||||
elG2.Add(table[lastPow2], table[i-lastPow2])
|
||||
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
|
||||
//table[i].MakeAffine()
|
||||
}
|
||||
table = append(table, elG2)
|
||||
}
|
||||
if toaffine {
|
||||
for i := 0; i < len(table); i++ {
|
||||
info := table[i].Marshal()
|
||||
table[i].Unmarshal(info)
|
||||
}
|
||||
}
|
||||
t.data = table
|
||||
}
|
||||
|
||||
func (t tableG2) Marshal() []byte {
|
||||
info := make([]byte, 0)
|
||||
for _, el := range t.data {
|
||||
info = append(info, el.Marshal()...)
|
||||
}
|
||||
|
||||
return info
|
||||
}
|
||||
|
||||
// Multiply scalar by precomputed table of G2 elements
|
||||
func (t *tableG2) mulTableG2(k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
|
||||
// We need at least gsize elements. If not enough, fill with 0
|
||||
kExt := make([]*big.Int, 0)
|
||||
kExt = append(kExt, k...)
|
||||
|
||||
for i := len(k); i < gsize; i++ {
|
||||
kExt = append(kExt, new(big.Int).SetUint64(0))
|
||||
}
|
||||
|
||||
Q := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
|
||||
|
||||
msb := getMsb(kExt)
|
||||
|
||||
for i := msb - 1; i >= 0; i-- {
|
||||
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
||||
Q = new(bn256.G2).Add(Q, Q)
|
||||
b := getBit(kExt, i)
|
||||
if b != 0 {
|
||||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
||||
Q.Add(Q, t.data[b])
|
||||
}
|
||||
}
|
||||
if qPrev != nil {
|
||||
return Q.Add(Q, qPrev)
|
||||
}
|
||||
return Q
|
||||
}
|
||||
|
||||
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
|
||||
func mulTableNoDoubleG2(t []tableG2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
|
||||
// We need at least gsize elements. If not enough, fill with 0
|
||||
minNElems := len(t) * gsize
|
||||
kExt := make([]*big.Int, 0)
|
||||
kExt = append(kExt, k...)
|
||||
for i := len(k); i < minNElems; i++ {
|
||||
kExt = append(kExt, new(big.Int).SetUint64(0))
|
||||
}
|
||||
// Init Adders
|
||||
nbitsQ := cryptoConstants.Q.BitLen()
|
||||
Q := make([]*bn256.G2, nbitsQ)
|
||||
|
||||
for i := 0; i < nbitsQ; i++ {
|
||||
Q[i] = new(bn256.G2).ScalarBaseMult(big.NewInt(0))
|
||||
}
|
||||
|
||||
// Perform bitwise addition
|
||||
for j := 0; j < len(t); j++ {
|
||||
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
|
||||
|
||||
for i := msb - 1; i >= 0; i-- {
|
||||
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
|
||||
if b != 0 {
|
||||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
||||
Q[i].Add(Q[i], t[j].data[b])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Consolidate Addition
|
||||
R := new(bn256.G2).Set(Q[nbitsQ-1])
|
||||
for i := nbitsQ - 1; i > 0; i-- {
|
||||
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
||||
R = new(bn256.G2).Add(R, R)
|
||||
R.Add(R, Q[i-1])
|
||||
}
|
||||
if qPrev != nil {
|
||||
return R.Add(R, qPrev)
|
||||
}
|
||||
return R
|
||||
}
|
||||
|
||||
// Compute tables within function. This solution should still be faster than std multiplication
|
||||
// for gsize = 7
|
||||
func scalarMultG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
|
||||
ntables := int((len(a) + gsize - 1) / gsize)
|
||||
table := tableG2{}
|
||||
Q := new(bn256.G2).ScalarBaseMult(new(big.Int))
|
||||
|
||||
for i := 0; i < ntables-1; i++ {
|
||||
table.newTableG2(a[i*gsize:(i+1)*gsize], gsize, false)
|
||||
Q = table.mulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize)
|
||||
}
|
||||
table.newTableG2(a[(ntables-1)*gsize:], gsize, false)
|
||||
Q = table.mulTableG2(k[(ntables-1)*gsize:], Q, gsize)
|
||||
|
||||
if qPrev != nil {
|
||||
return Q.Add(Q, qPrev)
|
||||
}
|
||||
return Q
|
||||
}
|
||||
|
||||
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
|
||||
func scalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
|
||||
ntables := int((len(a) + gsize - 1) / gsize)
|
||||
table := tableG2{}
|
||||
|
||||
// We need at least gsize elements. If not enough, fill with 0
|
||||
minNElems := ntables * gsize
|
||||
kExt := make([]*big.Int, 0)
|
||||
kExt = append(kExt, k...)
|
||||
for i := len(k); i < minNElems; i++ {
|
||||
kExt = append(kExt, new(big.Int).SetUint64(0))
|
||||
}
|
||||
// Init Adders
|
||||
nbitsQ := cryptoConstants.Q.BitLen()
|
||||
Q := make([]*bn256.G2, nbitsQ)
|
||||
|
||||
for i := 0; i < nbitsQ; i++ {
|
||||
Q[i] = new(bn256.G2).ScalarBaseMult(big.NewInt(0))
|
||||
}
|
||||
|
||||
// Perform bitwise addition
|
||||
for j := 0; j < ntables-1; j++ {
|
||||
table.newTableG2(a[j*gsize:(j+1)*gsize], gsize, false)
|
||||
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
|
||||
|
||||
for i := msb - 1; i >= 0; i-- {
|
||||
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
|
||||
if b != 0 {
|
||||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
||||
Q[i].Add(Q[i], table.data[b])
|
||||
}
|
||||
}
|
||||
}
|
||||
table.newTableG2(a[(ntables-1)*gsize:], gsize, false)
|
||||
msb := getMsb(kExt[(ntables-1)*gsize:])
|
||||
|
||||
for i := msb - 1; i >= 0; i-- {
|
||||
b := getBit(kExt[(ntables-1)*gsize:], i)
|
||||
if b != 0 {
|
||||
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
|
||||
Q[i].Add(Q[i], table.data[b])
|
||||
}
|
||||
}
|
||||
|
||||
// Consolidate Addition
|
||||
R := new(bn256.G2).Set(Q[nbitsQ-1])
|
||||
for i := nbitsQ - 1; i > 0; i-- {
|
||||
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
|
||||
R = new(bn256.G2).Add(R, R)
|
||||
R.Add(R, Q[i-1])
|
||||
}
|
||||
if qPrev != nil {
|
||||
return R.Add(R, qPrev)
|
||||
}
|
||||
return R
|
||||
}
|
||||
|
||||
// Return most significant bit position in a group of Big Integers
|
||||
func getMsb(k []*big.Int) int {
|
||||
msb := 0
|
||||
|
||||
for _, el := range k {
|
||||
tmpMsb := el.BitLen()
|
||||
if tmpMsb > msb {
|
||||
msb = tmpMsb
|
||||
}
|
||||
}
|
||||
return msb
|
||||
}
|
||||
|
||||
// Return ith bit in group of Big Integers
|
||||
func getBit(k []*big.Int, i int) uint {
|
||||
tableIdx := uint(0)
|
||||
|
||||
for idx, el := range k {
|
||||
b := el.Bit(i)
|
||||
tableIdx += (b << idx)
|
||||
}
|
||||
return tableIdx
|
||||
}
|
||||
163
prover/gextra_test.go
Normal file
163
prover/gextra_test.go
Normal file
@@ -0,0 +1,163 @@
|
||||
package prover
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/rand"
|
||||
"fmt"
|
||||
"math/big"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
|
||||
)
|
||||
|
||||
const (
|
||||
N1 = 5000
|
||||
N2 = 5000
|
||||
)
|
||||
|
||||
func randomBigIntArray(n int) []*big.Int {
|
||||
var p []*big.Int
|
||||
for i := 0; i < n; i++ {
|
||||
pi := randBI()
|
||||
p = append(p, pi)
|
||||
}
|
||||
|
||||
return p
|
||||
}
|
||||
|
||||
func randomG1Array(n int) []*bn256.G1 {
|
||||
arrayG1 := make([]*bn256.G1, n)
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
_, arrayG1[i], _ = bn256.RandomG1(rand.Reader)
|
||||
}
|
||||
return arrayG1
|
||||
}
|
||||
|
||||
func randomG2Array(n int) []*bn256.G2 {
|
||||
arrayG2 := make([]*bn256.G2, n)
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
_, arrayG2[i], _ = bn256.RandomG2(rand.Reader)
|
||||
}
|
||||
return arrayG2
|
||||
}
|
||||
|
||||
func TestTableG1(t *testing.T) {
|
||||
n := N1
|
||||
|
||||
// init scalar
|
||||
var arrayW = randomBigIntArray(n)
|
||||
// init G1 array
|
||||
var arrayG1 = randomG1Array(n)
|
||||
|
||||
beforeT := time.Now()
|
||||
Q1 := new(bn256.G1).ScalarBaseMult(new(big.Int))
|
||||
for i := 0; i < n; i++ {
|
||||
Q1.Add(Q1, new(bn256.G1).ScalarMult(arrayG1[i], arrayW[i]))
|
||||
}
|
||||
fmt.Println("Std. Mult. time elapsed:", time.Since(beforeT))
|
||||
|
||||
for gsize := 2; gsize < 10; gsize++ {
|
||||
ntables := int((n + gsize - 1) / gsize)
|
||||
table := make([]tableG1, ntables)
|
||||
|
||||
for i := 0; i < ntables-1; i++ {
|
||||
table[i].newTableG1(arrayG1[i*gsize:(i+1)*gsize], gsize, true)
|
||||
}
|
||||
table[ntables-1].newTableG1(arrayG1[(ntables-1)*gsize:], gsize, true)
|
||||
|
||||
beforeT = time.Now()
|
||||
Q2 := new(bn256.G1).ScalarBaseMult(new(big.Int))
|
||||
for i := 0; i < ntables-1; i++ {
|
||||
Q2 = table[i].mulTableG1(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
|
||||
}
|
||||
Q2 = table[ntables-1].mulTableG1(arrayW[(ntables-1)*gsize:], Q2, gsize)
|
||||
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize, time.Since(beforeT))
|
||||
|
||||
beforeT = time.Now()
|
||||
Q3 := scalarMultG1(arrayG1, arrayW, nil, gsize)
|
||||
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
|
||||
|
||||
beforeT = time.Now()
|
||||
Q4 := mulTableNoDoubleG1(table, arrayW, nil, gsize)
|
||||
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize, time.Since(beforeT))
|
||||
|
||||
beforeT = time.Now()
|
||||
Q5 := scalarMultNoDoubleG1(arrayG1, arrayW, nil, gsize)
|
||||
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
|
||||
|
||||
if bytes.Compare(Q1.Marshal(), Q2.Marshal()) != 0 {
|
||||
t.Error("Error in TMult")
|
||||
}
|
||||
if bytes.Compare(Q1.Marshal(), Q3.Marshal()) != 0 {
|
||||
t.Error("Error in TMult with table comp")
|
||||
}
|
||||
if bytes.Compare(Q1.Marshal(), Q4.Marshal()) != 0 {
|
||||
t.Error("Error in TMultNoDouble")
|
||||
}
|
||||
if bytes.Compare(Q1.Marshal(), Q5.Marshal()) != 0 {
|
||||
t.Error("Error in TMultNoDoublee with table comp")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestTableG2(t *testing.T) {
|
||||
n := N2
|
||||
|
||||
// init scalar
|
||||
var arrayW = randomBigIntArray(n)
|
||||
// init G2 array
|
||||
var arrayG2 = randomG2Array(n)
|
||||
|
||||
beforeT := time.Now()
|
||||
Q1 := new(bn256.G2).ScalarBaseMult(new(big.Int))
|
||||
for i := 0; i < n; i++ {
|
||||
Q1.Add(Q1, new(bn256.G2).ScalarMult(arrayG2[i], arrayW[i]))
|
||||
}
|
||||
fmt.Println("Std. Mult. time elapsed:", time.Since(beforeT))
|
||||
|
||||
for gsize := 2; gsize < 10; gsize++ {
|
||||
ntables := int((n + gsize - 1) / gsize)
|
||||
table := make([]tableG2, ntables)
|
||||
|
||||
for i := 0; i < ntables-1; i++ {
|
||||
table[i].newTableG2(arrayG2[i*gsize:(i+1)*gsize], gsize, false)
|
||||
}
|
||||
table[ntables-1].newTableG2(arrayG2[(ntables-1)*gsize:], gsize, false)
|
||||
|
||||
beforeT = time.Now()
|
||||
Q2 := new(bn256.G2).ScalarBaseMult(new(big.Int))
|
||||
for i := 0; i < ntables-1; i++ {
|
||||
Q2 = table[i].mulTableG2(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
|
||||
}
|
||||
Q2 = table[ntables-1].mulTableG2(arrayW[(ntables-1)*gsize:], Q2, gsize)
|
||||
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize, time.Since(beforeT))
|
||||
|
||||
beforeT = time.Now()
|
||||
Q3 := scalarMultG2(arrayG2, arrayW, nil, gsize)
|
||||
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
|
||||
|
||||
beforeT = time.Now()
|
||||
Q4 := mulTableNoDoubleG2(table, arrayW, nil, gsize)
|
||||
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize, time.Since(beforeT))
|
||||
|
||||
beforeT = time.Now()
|
||||
Q5 := scalarMultNoDoubleG2(arrayG2, arrayW, nil, gsize)
|
||||
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
|
||||
|
||||
if bytes.Compare(Q1.Marshal(), Q2.Marshal()) != 0 {
|
||||
t.Error("Error in TMult")
|
||||
}
|
||||
if bytes.Compare(Q1.Marshal(), Q3.Marshal()) != 0 {
|
||||
t.Error("Error in TMult with table comp")
|
||||
}
|
||||
if bytes.Compare(Q1.Marshal(), Q4.Marshal()) != 0 {
|
||||
t.Error("Error in TMultNoDouble")
|
||||
}
|
||||
if bytes.Compare(Q1.Marshal(), Q5.Marshal()) != 0 {
|
||||
t.Error("Error in TMultNoDoublee with table comp")
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -10,6 +10,7 @@ import (
|
||||
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
|
||||
"github.com/iden3/go-circom-prover-verifier/types"
|
||||
"github.com/iden3/go-iden3-crypto/utils"
|
||||
//"fmt"
|
||||
)
|
||||
|
||||
// Proof is the data structure of the Groth16 zkSNARK proof
|
||||
@@ -42,6 +43,11 @@ type Pk struct {
|
||||
// Witness contains the witness
|
||||
type Witness []*big.Int
|
||||
|
||||
// Group Size
|
||||
const (
|
||||
GSIZE = 6
|
||||
)
|
||||
|
||||
func randBigInt() (*big.Int, error) {
|
||||
maxbits := types.R.BitLen()
|
||||
b := make([]byte, (maxbits/8)-1)
|
||||
@@ -75,18 +81,33 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
|
||||
proofB := arrayOfZeroesG2(numcpu)
|
||||
proofC := arrayOfZeroesG1(numcpu)
|
||||
proofBG1 := arrayOfZeroesG1(numcpu)
|
||||
gsize := GSIZE
|
||||
var wg1 sync.WaitGroup
|
||||
wg1.Add(numcpu)
|
||||
for _cpu, _ranges := range ranges(pk.NVars, numcpu) {
|
||||
// split 1
|
||||
go func(cpu int, ranges [2]int) {
|
||||
for i := ranges[0]; i < ranges[1]; i++ {
|
||||
proofA[cpu].Add(proofA[cpu], new(bn256.G1).ScalarMult(pk.A[i], w[i]))
|
||||
proofB[cpu].Add(proofB[cpu], new(bn256.G2).ScalarMult(pk.B2[i], w[i]))
|
||||
proofBG1[cpu].Add(proofBG1[cpu], new(bn256.G1).ScalarMult(pk.B1[i], w[i]))
|
||||
if i >= pk.NPublic+1 {
|
||||
proofC[cpu].Add(proofC[cpu], new(bn256.G1).ScalarMult(pk.C[i], w[i]))
|
||||
proofA[cpu] = scalarMultNoDoubleG1(pk.A[ranges[0]:ranges[1]],
|
||||
w[ranges[0]:ranges[1]],
|
||||
proofA[cpu],
|
||||
gsize)
|
||||
proofB[cpu] = scalarMultNoDoubleG2(pk.B2[ranges[0]:ranges[1]],
|
||||
w[ranges[0]:ranges[1]],
|
||||
proofB[cpu],
|
||||
gsize)
|
||||
proofBG1[cpu] = scalarMultNoDoubleG1(pk.B1[ranges[0]:ranges[1]],
|
||||
w[ranges[0]:ranges[1]],
|
||||
proofBG1[cpu],
|
||||
gsize)
|
||||
minLim := pk.NPublic + 1
|
||||
if ranges[0] > pk.NPublic+1 {
|
||||
minLim = ranges[0]
|
||||
}
|
||||
if ranges[1] > pk.NPublic+1 {
|
||||
proofC[cpu] = scalarMultNoDoubleG1(pk.C[minLim:ranges[1]],
|
||||
w[minLim:ranges[1]],
|
||||
proofC[cpu],
|
||||
gsize)
|
||||
}
|
||||
wg1.Done()
|
||||
}(_cpu, _ranges)
|
||||
@@ -121,9 +142,10 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
|
||||
for _cpu, _ranges := range ranges(len(h), numcpu) {
|
||||
// split 2
|
||||
go func(cpu int, ranges [2]int) {
|
||||
for i := ranges[0]; i < ranges[1]; i++ {
|
||||
proofC[cpu].Add(proofC[cpu], new(bn256.G1).ScalarMult(pk.HExps[i], h[i]))
|
||||
}
|
||||
proofC[cpu] = scalarMultNoDoubleG1(pk.HExps[ranges[0]:ranges[1]],
|
||||
h[ranges[0]:ranges[1]],
|
||||
proofC[cpu],
|
||||
gsize)
|
||||
wg2.Done()
|
||||
}(_cpu, _ranges)
|
||||
}
|
||||
|
||||
@@ -16,8 +16,8 @@ import (
|
||||
func TestCircuitsGenerateProof(t *testing.T) {
|
||||
testCircuitGenerateProof(t, "circuit1k") // 1000 constraints
|
||||
testCircuitGenerateProof(t, "circuit5k") // 5000 constraints
|
||||
// testCircuitGenerateProof(t, "circuit10k") // 10000 constraints
|
||||
// testCircuitGenerateProof(t, "circuit20k") // 20000 constraints
|
||||
//testCircuitGenerateProof(t, "circuit10k") // 10000 constraints
|
||||
//testCircuitGenerateProof(t, "circuit20k") // 20000 constraints
|
||||
}
|
||||
|
||||
func testCircuitGenerateProof(t *testing.T, circuit string) {
|
||||
|
||||
49
prover/tables.md
Normal file
49
prover/tables.md
Normal file
@@ -0,0 +1,49 @@
|
||||
# Tables Pre-calculation
|
||||
The most time consuming part of a ZKSnark proof calculation is the scalar multiplication of elliptic curve points. Direct mechanism accumulates each multiplication. However, prover only needs the total accumulation.
|
||||
|
||||
There are two potential improvements to the naive approach:
|
||||
|
||||
1. Apply Strauss-Shamir method (https://stackoverflow.com/questions/50993471/ec-scalar-multiplication-with-strauss-shamir-method).
|
||||
2. Leave the doubling operation for the last step
|
||||
|
||||
Both options can be combined.
|
||||
|
||||
In the following table, we show the results of using the naive method, Srauss-Shamir and Strauss-Shamir + No doubling. These last two options are repeated for different table grouping order.
|
||||
|
||||
There are 50000 G1 Elliptical Curve Points, and the scalars are 254 bits (BN256 curve).
|
||||
|
||||
There may be some concern on the additional size of the tables since they need to be loaded into a smartphone during the proof, and the time required to load these tables may exceed the benefits. If this is a problem, another althernative is to compute the tables during the proof itself. Depending on the Group Size, timing may be better than the naive approach.
|
||||
|
||||
|
||||
| Algorithm (G1) | GS 2 | GS 3 | GS 4 | GS 5 | GS 6 | GS 7 | GS 8 | GS 9 |
|
||||
|---|---|---|--|---|---|---|---|---|
|
||||
| Naive | 6.63s | - | - | - | - | - | - | - |
|
||||
| Strauss | 13.16s | 9.03s | 6.95s | 5.61s | 4.91s | 4.26s | 3.88s | 3.54 s |
|
||||
| Strauss + Table Computation | 16.13s | 11.32s | 8.47s | 7.10s | 6.2s | 5.94s | 6.01s | 6.69s |
|
||||
| No Doubling | 3.74s | 3.00s | 2.38s | 1.96s | 1.79s | 1.54s | 1.50s | 1.44s|
|
||||
| No Doubling + Table Computation | 6.83s | 5.1s | 4.16s | 3.52s| 3.22s | 3.21s | 3.57s | 4.56s |
|
||||
|
||||
There are 5000 G2 Elliptical Curve Points, and the scalars are 254 bits (BN256 curve).
|
||||
|
||||
| Algorithm (G2) | GS 2 | GS 3 | GS 4 | GS 5 | GS 6 | GS 7 | GS 8 | GS 9 |
|
||||
|---|---|---|--|---|---|---|---|---|
|
||||
| Naive | 3.55s | | | | | | | |
|
||||
| Strauss | 3.55s | 2.54s | 1.96s | 1.58s | 1.38s | 1.20s | 1.03s | 937ms |
|
||||
| Strauss + Table Computation | 3.59s | 2.58s | 2.04s | 1.71s | 1.51s | 1.46s | 1.51s | 1.82s |
|
||||
| No Doubling | 1.49s | 1.16s | 952ms | 719ms | 661ms | 548ms | 506ms| 444ms |
|
||||
| No Doubling + Table Computation | 1.55s | 1.21s | 984ms | 841ms | 826ms | 847ms | 1.03s | 1.39s |
|
||||
|
||||
| GS | Extra Disk Space per Constraint (G1)|
|
||||
|----|--------|
|
||||
| 2 | 64 B |
|
||||
| 3 | 106 B |
|
||||
| 4 | 192 B |
|
||||
| 5 | 346 B |
|
||||
| 6 | 618 B |
|
||||
| 7 | 1106 B |
|
||||
| 8 | 1984 B |
|
||||
| 9 | 3577 B |
|
||||
| N | 2^(N+6)/N - 64 B |
|
||||
|
||||
Extra disk space per constraint in G2 is twice the requirements for G1
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
package types
|
||||
|
||||
import (
|
||||
"encoding/hex"
|
||||
"encoding/json"
|
||||
"math/big"
|
||||
|
||||
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
|
||||
@@ -16,6 +18,52 @@ type Proof struct {
|
||||
C *bn256.G1
|
||||
}
|
||||
|
||||
type proofAux struct {
|
||||
A string `json:"pi_a"`
|
||||
B string `json:"pi_b"`
|
||||
C string `json:"pi_c"`
|
||||
}
|
||||
|
||||
func (p Proof) MarshalJSON() ([]byte, error) {
|
||||
var pa proofAux
|
||||
pa.A = hex.EncodeToString(p.A.Marshal())
|
||||
pa.B = hex.EncodeToString(p.B.Marshal())
|
||||
pa.C = hex.EncodeToString(p.C.Marshal())
|
||||
return json.Marshal(pa)
|
||||
}
|
||||
|
||||
func (p *Proof) UnmarshalJSON(data []byte) error {
|
||||
var pa proofAux
|
||||
if err := json.Unmarshal(data, &pa); err != nil {
|
||||
return err
|
||||
}
|
||||
aBytes, err := hex.DecodeString(pa.A)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
p.A = new(bn256.G1)
|
||||
if _, err := p.A.Unmarshal(aBytes); err != nil {
|
||||
return err
|
||||
}
|
||||
bBytes, err := hex.DecodeString(pa.B)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
p.B = new(bn256.G2)
|
||||
if _, err := p.B.Unmarshal(bBytes); err != nil {
|
||||
return err
|
||||
}
|
||||
cBytes, err := hex.DecodeString(pa.C)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
p.C = new(bn256.G1)
|
||||
if _, err := p.C.Unmarshal(cBytes); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Pk holds the data structure of the ProvingKey
|
||||
type Pk struct {
|
||||
A []*bn256.G1
|
||||
|
||||
Reference in New Issue
Block a user