|
|
package babyjub
import ( "fmt" "math/big"
"github.com/iden3/go-iden3-crypto/constants" "github.com/iden3/go-iden3-crypto/ff" "github.com/iden3/go-iden3-crypto/utils" )
// A is one of the babyjub constants.
var A *big.Int
// Aff is A value in *ff.Element representation
var Aff *ff.Element
// D is one of the babyjub constants.
var D *big.Int
// Dff is D value in *ff.Element representation
var Dff *ff.Element
// Order of the babyjub curve.
var Order *big.Int
// SubOrder is the order of the subgroup of the babyjub curve that contains the
// points that we use.
var SubOrder *big.Int
// B8 is a base point of the babyjub multiplied by 8 to make it a base point of
// the subgroup in the curve.
var B8 *Point
// init initializes global numbers and the subgroup base.
func init() { A = utils.NewIntFromString("168700") D = utils.NewIntFromString("168696") Aff = ff.NewElement().SetBigInt(A) Dff = ff.NewElement().SetBigInt(D)
Order = utils.NewIntFromString( "21888242871839275222246405745257275088614511777268538073601725287587578984328") SubOrder = new(big.Int).Rsh(Order, 3)
B8 = NewPoint() B8.X = utils.NewIntFromString( "5299619240641551281634865583518297030282874472190772894086521144482721001553") B8.Y = utils.NewIntFromString( "16950150798460657717958625567821834550301663161624707787222815936182638968203") }
// PointProjective is the Point representation in projective coordinates
type PointProjective struct { X *ff.Element Y *ff.Element Z *ff.Element }
// NewPointProjective creates a new Point in projective coordinates.
func NewPointProjective() *PointProjective { return &PointProjective{X: ff.NewElement().SetZero(), Y: ff.NewElement().SetOne(), Z: ff.NewElement().SetOne()} }
// Affine returns the Point from the projective representation
func (p *PointProjective) Affine() *Point { if p.Z.Equal(ff.NewElement().SetZero()) { return &Point{ X: big.NewInt(0), Y: big.NewInt(0), } } zinv := ff.NewElement().Inverse(p.Z) x := ff.NewElement().Mul(p.X, zinv)
y := ff.NewElement().Mul(p.Y, zinv) xBig := big.NewInt(0) x.ToBigIntRegular(xBig) yBig := big.NewInt(0) y.ToBigIntRegular(yBig) return &Point{ X: xBig, Y: yBig, } }
// Add computes the addition of two points in projective coordinates
// representation
func (p *PointProjective) Add(q *PointProjective, o *PointProjective) *PointProjective { // add-2008-bbjlp
// https://hyperelliptic.org/EFD/g1p/auto-twisted-projective.html#doubling-dbl-2008-bbjlp
a := ff.NewElement().Mul(q.Z, o.Z) b := ff.NewElement().Square(a) c := ff.NewElement().Mul(q.X, o.X) d := ff.NewElement().Mul(q.Y, o.Y) e := ff.NewElement().Mul(Dff, c) e.MulAssign(d) f := ff.NewElement().Sub(b, e) g := ff.NewElement().Add(b, e) x1y1 := ff.NewElement().Add(q.X, q.Y) x2y2 := ff.NewElement().Add(o.X, o.Y) x3 := ff.NewElement().Mul(x1y1, x2y2) x3.SubAssign(c) x3.SubAssign(d) x3.MulAssign(a) x3.MulAssign(f) ac := ff.NewElement().Mul(Aff, c) y3 := ff.NewElement().Sub(d, ac) y3.MulAssign(a) y3.MulAssign(g) z3 := ff.NewElement().Mul(f, g)
p.X = x3 p.Y = y3 p.Z = z3 return p }
// Point represents a point of the babyjub curve.
type Point struct { X *big.Int Y *big.Int }
// NewPoint creates a new Point.
func NewPoint() *Point { return &Point{X: big.NewInt(0), Y: big.NewInt(1)} }
// Set copies a Point c into the Point p
func (p *Point) Set(c *Point) *Point { p.X.Set(c.X) p.Y.Set(c.Y) return p }
// Projective returns a PointProjective from the Point
func (p *Point) Projective() *PointProjective { return &PointProjective{ X: ff.NewElement().SetBigInt(p.X), Y: ff.NewElement().SetBigInt(p.Y), Z: ff.NewElement().SetOne(), } }
// Mul multiplies the Point q by the scalar s and stores the result in p,
// which is also returned.
func (p *Point) Mul(s *big.Int, q *Point) *Point { resProj := &PointProjective{ X: ff.NewElement().SetZero(), Y: ff.NewElement().SetOne(), Z: ff.NewElement().SetOne(), } exp := q.Projective()
for i := 0; i < s.BitLen(); i++ { if s.Bit(i) == 1 { resProj.Add(resProj, exp) } exp = exp.Add(exp, exp) } p = resProj.Affine() return p }
// InCurve returns true when the Point p is in the babyjub curve.
func (p *Point) InCurve() bool { x2 := new(big.Int).Set(p.X) x2.Mul(x2, x2) x2.Mod(x2, constants.Q)
y2 := new(big.Int).Set(p.Y) y2.Mul(y2, y2) y2.Mod(y2, constants.Q)
a := new(big.Int).Mul(A, x2) a.Add(a, y2) a.Mod(a, constants.Q)
b := new(big.Int).Set(D) b.Mul(b, x2) b.Mul(b, y2) b.Add(constants.One, b) b.Mod(b, constants.Q)
return a.Cmp(b) == 0 }
// InSubGroup returns true when the Point p is in the subgroup of the babyjub
// curve.
func (p *Point) InSubGroup() bool { if !p.InCurve() { return false } res := NewPoint().Mul(SubOrder, p) return (res.X.Cmp(constants.Zero) == 0) && (res.Y.Cmp(constants.One) == 0) }
// PointCoordSign returns the sign of the curve point coordinate. It returns
// false if the sign is positive and false if the sign is negative.
func PointCoordSign(c *big.Int) bool { return c.Cmp(new(big.Int).Rsh(constants.Q, 1)) == 1 }
// PackPoint packs a point into a 32 byte array
func PackPoint(ay *big.Int, sign bool) [32]byte { leBuf := utils.BigIntLEBytes(ay) if sign { leBuf[31] = leBuf[31] | 0x80 //nolint:gomnd
} return leBuf }
// Compress the point into a 32 byte array that contains the y coordinate in
// little endian and the sign of the x coordinate.
func (p *Point) Compress() [32]byte { sign := PointCoordSign(p.X) return PackPoint(p.Y, sign) }
// Decompress a compressed Point into p, and also returns the decompressed
// Point. Returns error if the compressed Point is invalid.
func (p *Point) Decompress(leBuf [32]byte) (*Point, error) { var sign bool sign, p.Y = CompressedPointToSignAndY(leBuf) return PointFromSignAndY(sign, p.Y) }
// CompressedPointToSignAndY returns the sign and coordinate Y from a given
// compressed point. This method does not check that the Point belongs to the
// BabyJubJub curve, thus does not return error in such case. This method is
// intended to obtain the sign and the Y coordinate without checking if the
// point belongs to the curve, if the objective is to uncompress a point
// Decompress method should be used instead.
func CompressedPointToSignAndY(leBuf [32]byte) (bool, *big.Int) { sign := false y := big.NewInt(0) if (leBuf[31] & 0x80) != 0x00 { //nolint:gomnd
sign = true leBuf[31] = leBuf[31] & 0x7F //nolint:gomnd
} utils.SetBigIntFromLEBytes(y, leBuf[:]) return sign, y }
// PointFromSignAndY returns a Point from a Sign and the Y coordinate
func PointFromSignAndY(sign bool, y *big.Int) (*Point, error) { var p Point p.X = big.NewInt(0) p.Y = y if p.Y.Cmp(constants.Q) >= 0 { return nil, fmt.Errorf("p.y >= Q") }
y2 := new(big.Int).Mul(p.Y, p.Y) y2.Mod(y2, constants.Q) xa := big.NewInt(1) xa.Sub(xa, y2) // xa == 1 - y^2
xb := new(big.Int).Mul(D, y2) xb.Mod(xb, constants.Q) xb.Sub(A, xb) // xb = A - d * y^2
if xb.Cmp(big.NewInt(0)) == 0 { return nil, fmt.Errorf("division by 0") } xb.ModInverse(xb, constants.Q) p.X.Mul(xa, xb) // xa / xb
p.X.Mod(p.X, constants.Q) noSqrt := p.X.ModSqrt(p.X, constants.Q) if noSqrt == nil { return nil, fmt.Errorf("x is not a square mod q") } if (sign && !PointCoordSign(p.X)) || (!sign && PointCoordSign(p.X)) { p.X.Mul(p.X, constants.MinusOne) } p.X.Mod(p.X, constants.Q)
return &p, nil }
|