|
|
package babyjub
import ( "fmt" "math/big"
"github.com/iden3/go-iden3-crypto/constants" "github.com/iden3/go-iden3-crypto/utils" )
// A is one of the babyjub constants.
var A *big.Int
// D is one of the babyjub constants.
var D *big.Int
// Order of the babyjub curve.
var Order *big.Int
// SubOrder is the order of the subgroup of the babyjub curve that contains the
// points that we use.
var SubOrder *big.Int
// B8 is a base point of the babyjub multiplied by 8 to make it a base point of
// the subgroup in the curve.
var B8 *Point
// init initializes global numbers and the subgroup base.
func init() { A = utils.NewIntFromString("168700") D = utils.NewIntFromString("168696")
Order = utils.NewIntFromString( "21888242871839275222246405745257275088614511777268538073601725287587578984328") SubOrder = new(big.Int).Rsh(Order, 3)
B8 = NewPoint() B8.X = utils.NewIntFromString( "5299619240641551281634865583518297030282874472190772894086521144482721001553") B8.Y = utils.NewIntFromString( "16950150798460657717958625567821834550301663161624707787222815936182638968203") }
// Point represents a point of the babyjub curve.
type Point struct { X *big.Int Y *big.Int }
// NewPoint creates a new Point.
func NewPoint() *Point { return &Point{X: big.NewInt(0), Y: big.NewInt(1)} }
// Set copies a Point c into the Point p
func (p *Point) Set(c *Point) *Point { p.X.Set(c.X) p.Y.Set(c.Y) return p }
// Add adds Point a and b into res
func (res *Point) Add(a *Point, b *Point) *Point { // x = (a.x * b.y + b.x * a.y) * (1 + D * a.x * b.x * a.y * b.y)^-1 mod q
x1a := new(big.Int).Mul(a.X, b.Y) x1b := new(big.Int).Mul(b.X, a.Y) x1a.Add(x1a, x1b) // x1a = a.x * b.y + b.x * a.y
x2 := new(big.Int).Set(D) x2.Mul(x2, a.X) x2.Mul(x2, b.X) x2.Mul(x2, a.Y) x2.Mul(x2, b.Y) x2.Add(constants.One, x2) x2.Mod(x2, constants.Q) x2.ModInverse(x2, constants.Q) // x2 = (1 + D * a.x * b.x * a.y * b.y)^-1
// y = (a.y * b.y - A * a.x * b.x) * (1 - D * a.x * b.x * a.y * b.y)^-1 mod q
y1a := new(big.Int).Mul(a.Y, b.Y) y1b := new(big.Int).Set(A) y1b.Mul(y1b, a.X) y1b.Mul(y1b, b.X)
y1a.Sub(y1a, y1b) // y1a = a.y * b.y - A * a.x * b.x
y2 := new(big.Int).Set(D) y2.Mul(y2, a.X) y2.Mul(y2, b.X) y2.Mul(y2, a.Y) y2.Mul(y2, b.Y) y2.Sub(constants.One, y2) y2.Mod(y2, constants.Q) y2.ModInverse(y2, constants.Q) // y2 = (1 - D * a.x * b.x * a.y * b.y)^-1
res.X = x1a.Mul(x1a, x2) res.X = res.X.Mod(res.X, constants.Q)
res.Y = y1a.Mul(y1a, y2) res.Y = res.Y.Mod(res.Y, constants.Q)
return res }
// Mul multiplies the Point p by the scalar s and stores the result in res,
// which is also returned.
func (res *Point) Mul(s *big.Int, p *Point) *Point { res.X = big.NewInt(0) res.Y = big.NewInt(1) exp := NewPoint().Set(p)
for i := 0; i < s.BitLen(); i++ { if s.Bit(i) == 1 { res.Add(res, exp) } exp.Add(exp, exp) }
return res }
// InCurve returns true when the Point p is in the babyjub curve.
func (p *Point) InCurve() bool { x2 := new(big.Int).Set(p.X) x2.Mul(x2, x2) x2.Mod(x2, constants.Q)
y2 := new(big.Int).Set(p.Y) y2.Mul(y2, y2) y2.Mod(y2, constants.Q)
a := new(big.Int).Mul(A, x2) a.Add(a, y2) a.Mod(a, constants.Q)
b := new(big.Int).Set(D) b.Mul(b, x2) b.Mul(b, y2) b.Add(constants.One, b) b.Mod(b, constants.Q)
return a.Cmp(b) == 0 }
// InSubGroup returns true when the Point p is in the subgroup of the babyjub
// curve.
func (p *Point) InSubGroup() bool { if !p.InCurve() { return false } res := NewPoint().Mul(SubOrder, p) return (res.X.Cmp(constants.Zero) == 0) && (res.Y.Cmp(constants.One) == 0) }
// PointCoordSign returns the sign of the curve point coordinate. It returns
// false if the sign is positive and false if the sign is negative.
func PointCoordSign(c *big.Int) bool { if c.Cmp(new(big.Int).Rsh(constants.Q, 1)) == 1 { return true } return false }
func PackPoint(ay *big.Int, sign bool) [32]byte { leBuf := utils.BigIntLEBytes(ay) if sign { leBuf[31] = leBuf[31] | 0x80 } return leBuf }
// Compress the point into a 32 byte array that contains the y coordinate in
// little endian and the sign of the x coordinate.
func (p *Point) Compress() [32]byte { sign := PointCoordSign(p.X) return PackPoint(p.Y, sign) }
// Decompress a compressed Point into p, and also returns the decompressed
// Point. Returns error if the compressed Point is invalid.
func (p *Point) Decompress(leBuf [32]byte) (*Point, error) { sign := false if (leBuf[31] & 0x80) != 0x00 { sign = true leBuf[31] = leBuf[31] & 0x7F } utils.SetBigIntFromLEBytes(p.Y, leBuf[:]) if p.Y.Cmp(constants.Q) >= 0 { return nil, fmt.Errorf("p.y >= Q") }
y2 := new(big.Int).Mul(p.Y, p.Y) y2.Mod(y2, constants.Q) xa := big.NewInt(1) xa.Sub(xa, y2) // xa == 1 - y^2
xb := new(big.Int).Mul(D, y2) xb.Mod(xb, constants.Q) xb.Sub(A, xb) // xb = A - d * y^2
if xb.Cmp(big.NewInt(0)) == 0 { return nil, fmt.Errorf("division by 0") } xb.ModInverse(xb, constants.Q) p.X.Mul(xa, xb) // xa / xb
p.X.Mod(p.X, constants.Q) noSqrt := p.X.ModSqrt(p.X, constants.Q) if noSqrt == nil { return nil, fmt.Errorf("x is not a square mod q") } if (sign && !PointCoordSign(p.X)) || (!sign && PointCoordSign(p.X)) { p.X.Mul(p.X, constants.MinusOne) } p.X.Mod(p.X, constants.Q)
return p, nil }
|