mirror of
https://github.com/arnaucube/go-iden3-crypto.git
synced 2026-02-07 11:36:41 +01:00
Merge pull request #46 from iden3/feature/golden
Golden poseidon hash implementation
This commit is contained in:
30
ffg/arith.go
Normal file
30
ffg/arith.go
Normal file
@@ -0,0 +1,30 @@
|
||||
// Copyright 2020 ConsenSys Software Inc.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
||||
|
||||
package ffg
|
||||
|
||||
import (
|
||||
"math/bits"
|
||||
)
|
||||
|
||||
// madd0 hi = a*b + c (discards lo bits)
|
||||
func madd0(a, b, c uint64) (hi uint64) {
|
||||
var carry, lo uint64
|
||||
hi, lo = bits.Mul64(a, b)
|
||||
_, carry = bits.Add64(lo, c, 0)
|
||||
hi, _ = bits.Add64(hi, 0, carry)
|
||||
return
|
||||
}
|
||||
24
ffg/asm.go
Normal file
24
ffg/asm.go
Normal file
@@ -0,0 +1,24 @@
|
||||
//go:build !noadx
|
||||
// +build !noadx
|
||||
|
||||
// Copyright 2020 ConsenSys Software Inc.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
||||
|
||||
package ffg
|
||||
|
||||
import "golang.org/x/sys/cpu"
|
||||
|
||||
var supportAdx = cpu.X86.HasADX && cpu.X86.HasBMI2
|
||||
25
ffg/asm_noadx.go
Normal file
25
ffg/asm_noadx.go
Normal file
@@ -0,0 +1,25 @@
|
||||
//go:build noadx
|
||||
// +build noadx
|
||||
|
||||
// Copyright 2020 ConsenSys Software Inc.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
||||
|
||||
package ffg
|
||||
|
||||
// note: this is needed for test purposes, as dynamically changing supportAdx doesn't flag
|
||||
// certain errors (like fatal error: missing stackmap)
|
||||
// this ensures we test all asm path.
|
||||
var supportAdx = false
|
||||
43
ffg/doc.go
Normal file
43
ffg/doc.go
Normal file
@@ -0,0 +1,43 @@
|
||||
// Copyright 2020 ConsenSys Software Inc.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
||||
|
||||
// Package ffg contains field arithmetic operations for modulus = 0xffffff...000001.
|
||||
//
|
||||
// The API is similar to math/big (big.Int), but the operations are significantly faster (up to 20x for the modular multiplication on amd64, see also https://hackmd.io/@zkteam/modular_multiplication)
|
||||
//
|
||||
// The modulus is hardcoded in all the operations.
|
||||
//
|
||||
// Field elements are represented as an array, and assumed to be in Montgomery form in all methods:
|
||||
// type Element [1]uint64
|
||||
//
|
||||
// Example API signature
|
||||
// // Mul z = x * y mod q
|
||||
// func (z *Element) Mul(x, y *Element) *Element
|
||||
//
|
||||
// and can be used like so:
|
||||
// var a, b Element
|
||||
// a.SetUint64(2)
|
||||
// b.SetString("984896738")
|
||||
// a.Mul(a, b)
|
||||
// a.Sub(a, a)
|
||||
// .Add(a, b)
|
||||
// .Inv(a)
|
||||
// b.Exp(b, new(big.Int).SetUint64(42))
|
||||
//
|
||||
// Modulus
|
||||
// 0xffffffff00000001 // base 16
|
||||
// 18446744069414584321 // base 10
|
||||
package ffg
|
||||
759
ffg/element.go
Normal file
759
ffg/element.go
Normal file
@@ -0,0 +1,759 @@
|
||||
// Copyright 2020 ConsenSys Software Inc.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
||||
|
||||
package ffg
|
||||
|
||||
// /!\ WARNING /!\
|
||||
// this code has not been audited and is provided as-is. In particular,
|
||||
// there is no security guarantees such as constant time implementation
|
||||
// or side-channel attack resistance
|
||||
// /!\ WARNING /!\
|
||||
|
||||
import (
|
||||
"crypto/rand"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"io"
|
||||
"math/big"
|
||||
"math/bits"
|
||||
"reflect"
|
||||
"strconv"
|
||||
"sync"
|
||||
)
|
||||
|
||||
// Element represents a field element stored on 1 words (uint64)
|
||||
// Element are assumed to be in Montgomery form in all methods
|
||||
// field modulus q =
|
||||
//
|
||||
// 18446744069414584321
|
||||
type Element [1]uint64
|
||||
|
||||
// Limbs number of 64 bits words needed to represent Element
|
||||
const Limbs = 1
|
||||
|
||||
// Bits number bits needed to represent Element
|
||||
const Bits = 64
|
||||
|
||||
// Bytes number bytes needed to represent Element
|
||||
const Bytes = Limbs * 8
|
||||
|
||||
// field modulus stored as big.Int
|
||||
var _modulus big.Int
|
||||
|
||||
// Modulus returns q as a big.Int
|
||||
// q =
|
||||
//
|
||||
// 18446744069414584321
|
||||
func Modulus() *big.Int {
|
||||
return new(big.Int).Set(&_modulus)
|
||||
}
|
||||
|
||||
// q (modulus)
|
||||
var qElement = Element{
|
||||
18446744069414584321,
|
||||
}
|
||||
|
||||
// rSquare
|
||||
var rSquare = Element{
|
||||
18446744065119617025,
|
||||
}
|
||||
|
||||
var bigIntPool = sync.Pool{
|
||||
New: func() interface{} {
|
||||
return new(big.Int)
|
||||
},
|
||||
}
|
||||
|
||||
func init() {
|
||||
_modulus.SetString("18446744069414584321", 10)
|
||||
}
|
||||
|
||||
// NewElement returns a new Element
|
||||
func NewElement() *Element {
|
||||
return &Element{}
|
||||
}
|
||||
|
||||
// NewElementFromUint64 returns a new Element from a uint64 value
|
||||
//
|
||||
// it is equivalent to
|
||||
// var v NewElement
|
||||
// v.SetUint64(...)
|
||||
func NewElementFromUint64(v uint64) *Element {
|
||||
z := Element{v}
|
||||
z.Mul(&z, &rSquare)
|
||||
return &z
|
||||
}
|
||||
|
||||
// SetUint64 z = v, sets z LSB to v (non-Montgomery form) and convert z to Montgomery form
|
||||
func (z *Element) SetUint64(v uint64) *Element {
|
||||
*z = Element{v}
|
||||
return z.Mul(z, &rSquare) // z.ToMont()
|
||||
}
|
||||
|
||||
// Set z = x
|
||||
func (z *Element) Set(x *Element) *Element {
|
||||
z[0] = x[0]
|
||||
return z
|
||||
}
|
||||
|
||||
// SetInterface converts provided interface into Element
|
||||
// returns an error if provided type is not supported
|
||||
// supported types: Element, *Element, uint64, int, string (interpreted as base10 integer),
|
||||
// *big.Int, big.Int, []byte
|
||||
func (z *Element) SetInterface(i1 interface{}) (*Element, error) {
|
||||
switch c1 := i1.(type) {
|
||||
case Element:
|
||||
return z.Set(&c1), nil
|
||||
case *Element:
|
||||
return z.Set(c1), nil
|
||||
case uint64:
|
||||
return z.SetUint64(c1), nil
|
||||
case int:
|
||||
return z.SetString(strconv.Itoa(c1)), nil
|
||||
case string:
|
||||
return z.SetString(c1), nil
|
||||
case *big.Int:
|
||||
return z.SetBigInt(c1), nil
|
||||
case big.Int:
|
||||
return z.SetBigInt(&c1), nil
|
||||
case []byte:
|
||||
return z.SetBytes(c1), nil
|
||||
default:
|
||||
return nil, errors.New("can't set ffg.Element from type " + reflect.TypeOf(i1).String())
|
||||
}
|
||||
}
|
||||
|
||||
// SetZero z = 0
|
||||
func (z *Element) SetZero() *Element {
|
||||
z[0] = 0
|
||||
return z
|
||||
}
|
||||
|
||||
// SetOne z = 1 (in Montgomery form)
|
||||
func (z *Element) SetOne() *Element {
|
||||
z[0] = 4294967295
|
||||
return z
|
||||
}
|
||||
|
||||
// Div z = x*y^-1 mod q
|
||||
func (z *Element) Div(x, y *Element) *Element {
|
||||
var yInv Element
|
||||
yInv.Inverse(y)
|
||||
z.Mul(x, &yInv)
|
||||
return z
|
||||
}
|
||||
|
||||
// Bit returns the i'th bit, with lsb == bit 0.
|
||||
// It is the responsability of the caller to convert from Montgomery to Regular form if needed
|
||||
func (z *Element) Bit(i uint64) uint64 {
|
||||
j := i / 64
|
||||
if j >= 1 {
|
||||
return 0
|
||||
}
|
||||
return uint64(z[j] >> (i % 64) & 1)
|
||||
}
|
||||
|
||||
// Equal returns z == x
|
||||
func (z *Element) Equal(x *Element) bool {
|
||||
return (z[0] == x[0])
|
||||
}
|
||||
|
||||
// IsZero returns z == 0
|
||||
func (z *Element) IsZero() bool {
|
||||
return (z[0]) == 0
|
||||
}
|
||||
|
||||
// IsUint64 returns true if z[0] >= 0 and all other words are 0
|
||||
func (z *Element) IsUint64() bool {
|
||||
return true
|
||||
}
|
||||
|
||||
// Cmp compares (lexicographic order) z and x and returns:
|
||||
//
|
||||
// -1 if z < x
|
||||
// 0 if z == x
|
||||
// +1 if z > x
|
||||
//
|
||||
func (z *Element) Cmp(x *Element) int {
|
||||
_z := *z
|
||||
_x := *x
|
||||
_z.FromMont()
|
||||
_x.FromMont()
|
||||
if _z[0] > _x[0] {
|
||||
return 1
|
||||
} else if _z[0] < _x[0] {
|
||||
return -1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// LexicographicallyLargest returns true if this element is strictly lexicographically
|
||||
// larger than its negation, false otherwise
|
||||
func (z *Element) LexicographicallyLargest() bool {
|
||||
// adapted from github.com/zkcrypto/bls12_381
|
||||
// we check if the element is larger than (q-1) / 2
|
||||
// if z - (((q -1) / 2) + 1) have no underflow, then z > (q-1) / 2
|
||||
|
||||
_z := *z
|
||||
_z.FromMont()
|
||||
|
||||
var b uint64
|
||||
_, b = bits.Sub64(_z[0], 9223372034707292161, 0)
|
||||
|
||||
return b == 0
|
||||
}
|
||||
|
||||
// SetRandom sets z to a random element < q
|
||||
func (z *Element) SetRandom() (*Element, error) {
|
||||
var bytes [8]byte
|
||||
if _, err := io.ReadFull(rand.Reader, bytes[:]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
z[0] = binary.BigEndian.Uint64(bytes[0:8])
|
||||
z[0] %= 18446744069414584321
|
||||
|
||||
// if z > q --> z -= q
|
||||
// note: this is NOT constant time
|
||||
if !(z[0] < 18446744069414584321) {
|
||||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
||||
}
|
||||
|
||||
return z, nil
|
||||
}
|
||||
|
||||
// One returns 1 (in montgommery form)
|
||||
func One() Element {
|
||||
var one Element
|
||||
one.SetOne()
|
||||
return one
|
||||
}
|
||||
|
||||
// Halve sets z to z / 2 (mod p)
|
||||
func (z *Element) Halve() {
|
||||
var twoInv Element
|
||||
twoInv.SetOne().Double(&twoInv).Inverse(&twoInv)
|
||||
z.Mul(z, &twoInv)
|
||||
|
||||
}
|
||||
|
||||
// API with assembly impl
|
||||
|
||||
// Mul z = x * y mod q
|
||||
// see https://hackmd.io/@zkteam/modular_multiplication
|
||||
func (z *Element) Mul(x, y *Element) *Element {
|
||||
mul(z, x, y)
|
||||
return z
|
||||
}
|
||||
|
||||
// Square z = x * x mod q
|
||||
// see https://hackmd.io/@zkteam/modular_multiplication
|
||||
func (z *Element) Square(x *Element) *Element {
|
||||
mul(z, x, x)
|
||||
return z
|
||||
}
|
||||
|
||||
// FromMont converts z in place (i.e. mutates) from Montgomery to regular representation
|
||||
// sets and returns z = z * 1
|
||||
func (z *Element) FromMont() *Element {
|
||||
fromMont(z)
|
||||
return z
|
||||
}
|
||||
|
||||
// Add z = x + y mod q
|
||||
func (z *Element) Add(x, y *Element) *Element {
|
||||
add(z, x, y)
|
||||
return z
|
||||
}
|
||||
|
||||
// Double z = x + x mod q, aka Lsh 1
|
||||
func (z *Element) Double(x *Element) *Element {
|
||||
double(z, x)
|
||||
return z
|
||||
}
|
||||
|
||||
// Sub z = x - y mod q
|
||||
func (z *Element) Sub(x, y *Element) *Element {
|
||||
sub(z, x, y)
|
||||
return z
|
||||
}
|
||||
|
||||
// Neg z = q - x
|
||||
func (z *Element) Neg(x *Element) *Element {
|
||||
neg(z, x)
|
||||
return z
|
||||
}
|
||||
|
||||
// Generic (no ADX instructions, no AMD64) versions of multiplication and squaring algorithms
|
||||
|
||||
func _mulGeneric(z, x, y *Element) {
|
||||
|
||||
var t [2]uint64
|
||||
var D uint64
|
||||
var m, C uint64
|
||||
// -----------------------------------
|
||||
// First loop
|
||||
|
||||
C, t[0] = bits.Mul64(y[0], x[0])
|
||||
|
||||
t[1], D = bits.Add64(t[1], C, 0)
|
||||
|
||||
// m = t[0]n'[0] mod W
|
||||
m = t[0] * 18446744069414584319
|
||||
|
||||
// -----------------------------------
|
||||
// Second loop
|
||||
C = madd0(m, 18446744069414584321, t[0])
|
||||
|
||||
t[0], C = bits.Add64(t[1], C, 0)
|
||||
t[1], _ = bits.Add64(0, D, C)
|
||||
|
||||
if t[1] != 0 {
|
||||
// we need to reduce, we have a result on 2 words
|
||||
z[0], _ = bits.Sub64(t[0], 18446744069414584321, 0)
|
||||
|
||||
return
|
||||
|
||||
}
|
||||
|
||||
// copy t into z
|
||||
z[0] = t[0]
|
||||
|
||||
// if z > q --> z -= q
|
||||
// note: this is NOT constant time
|
||||
if !(z[0] < 18446744069414584321) {
|
||||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
||||
}
|
||||
}
|
||||
|
||||
func _fromMontGeneric(z *Element) {
|
||||
// the following lines implement z = z * 1
|
||||
// with a modified CIOS montgomery multiplication
|
||||
{
|
||||
// m = z[0]n'[0] mod W
|
||||
m := z[0] * 18446744069414584319
|
||||
C := madd0(m, 18446744069414584321, z[0])
|
||||
z[0] = C
|
||||
}
|
||||
|
||||
// if z > q --> z -= q
|
||||
// note: this is NOT constant time
|
||||
if !(z[0] < 18446744069414584321) {
|
||||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
||||
}
|
||||
}
|
||||
|
||||
func _addGeneric(z, x, y *Element) {
|
||||
var carry uint64
|
||||
|
||||
z[0], carry = bits.Add64(x[0], y[0], 0)
|
||||
// if we overflowed the last addition, z >= q
|
||||
// if z >= q, z = z - q
|
||||
if carry != 0 {
|
||||
// we overflowed, so z >= q
|
||||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
||||
return
|
||||
}
|
||||
|
||||
// if z > q --> z -= q
|
||||
// note: this is NOT constant time
|
||||
if !(z[0] < 18446744069414584321) {
|
||||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
||||
}
|
||||
}
|
||||
|
||||
func _doubleGeneric(z, x *Element) {
|
||||
var carry uint64
|
||||
|
||||
z[0], carry = bits.Add64(x[0], x[0], 0)
|
||||
// if we overflowed the last addition, z >= q
|
||||
// if z >= q, z = z - q
|
||||
if carry != 0 {
|
||||
// we overflowed, so z >= q
|
||||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
||||
return
|
||||
}
|
||||
|
||||
// if z > q --> z -= q
|
||||
// note: this is NOT constant time
|
||||
if !(z[0] < 18446744069414584321) {
|
||||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
||||
}
|
||||
}
|
||||
|
||||
func _subGeneric(z, x, y *Element) {
|
||||
var b uint64
|
||||
z[0], b = bits.Sub64(x[0], y[0], 0)
|
||||
if b != 0 {
|
||||
z[0], _ = bits.Add64(z[0], 18446744069414584321, 0)
|
||||
}
|
||||
}
|
||||
|
||||
func _negGeneric(z, x *Element) {
|
||||
if x.IsZero() {
|
||||
z.SetZero()
|
||||
return
|
||||
}
|
||||
z[0], _ = bits.Sub64(18446744069414584321, x[0], 0)
|
||||
}
|
||||
|
||||
func _reduceGeneric(z *Element) {
|
||||
|
||||
// if z > q --> z -= q
|
||||
// note: this is NOT constant time
|
||||
if !(z[0] < 18446744069414584321) {
|
||||
z[0], _ = bits.Sub64(z[0], 18446744069414584321, 0)
|
||||
}
|
||||
}
|
||||
|
||||
func mulByConstant(z *Element, c uint8) {
|
||||
switch c {
|
||||
case 0:
|
||||
z.SetZero()
|
||||
return
|
||||
case 1:
|
||||
return
|
||||
case 2:
|
||||
z.Double(z)
|
||||
return
|
||||
case 3:
|
||||
_z := *z
|
||||
z.Double(z).Add(z, &_z)
|
||||
case 5:
|
||||
_z := *z
|
||||
z.Double(z).Double(z).Add(z, &_z)
|
||||
default:
|
||||
var y Element
|
||||
y.SetUint64(uint64(c))
|
||||
z.Mul(z, &y)
|
||||
}
|
||||
}
|
||||
|
||||
// BatchInvert returns a new slice with every element inverted.
|
||||
// Uses Montgomery batch inversion trick
|
||||
func BatchInvert(a []Element) []Element {
|
||||
res := make([]Element, len(a))
|
||||
if len(a) == 0 {
|
||||
return res
|
||||
}
|
||||
|
||||
zeroes := make([]bool, len(a))
|
||||
accumulator := One()
|
||||
|
||||
for i := 0; i < len(a); i++ {
|
||||
if a[i].IsZero() {
|
||||
zeroes[i] = true
|
||||
continue
|
||||
}
|
||||
res[i] = accumulator
|
||||
accumulator.Mul(&accumulator, &a[i])
|
||||
}
|
||||
|
||||
accumulator.Inverse(&accumulator)
|
||||
|
||||
for i := len(a) - 1; i >= 0; i-- {
|
||||
if zeroes[i] {
|
||||
continue
|
||||
}
|
||||
res[i].Mul(&res[i], &accumulator)
|
||||
accumulator.Mul(&accumulator, &a[i])
|
||||
}
|
||||
|
||||
return res
|
||||
}
|
||||
|
||||
func _butterflyGeneric(a, b *Element) {
|
||||
t := *a
|
||||
a.Add(a, b)
|
||||
b.Sub(&t, b)
|
||||
}
|
||||
|
||||
// BitLen returns the minimum number of bits needed to represent z
|
||||
// returns 0 if z == 0
|
||||
func (z *Element) BitLen() int {
|
||||
return bits.Len64(z[0])
|
||||
}
|
||||
|
||||
// Exp z = x^exponent mod q
|
||||
func (z *Element) Exp(x Element, exponent *big.Int) *Element {
|
||||
var bZero big.Int
|
||||
if exponent.Cmp(&bZero) == 0 {
|
||||
return z.SetOne()
|
||||
}
|
||||
|
||||
z.Set(&x)
|
||||
|
||||
for i := exponent.BitLen() - 2; i >= 0; i-- {
|
||||
z.Square(z)
|
||||
if exponent.Bit(i) == 1 {
|
||||
z.Mul(z, &x)
|
||||
}
|
||||
}
|
||||
|
||||
return z
|
||||
}
|
||||
|
||||
// ToMont converts z to Montgomery form
|
||||
// sets and returns z = z * r^2
|
||||
func (z *Element) ToMont() *Element {
|
||||
return z.Mul(z, &rSquare)
|
||||
}
|
||||
|
||||
// ToRegular returns z in regular form (doesn't mutate z)
|
||||
func (z Element) ToRegular() Element {
|
||||
return *z.FromMont()
|
||||
}
|
||||
|
||||
// String returns the string form of an Element in Montgomery form
|
||||
func (z *Element) String() string {
|
||||
zz := *z
|
||||
zz.FromMont()
|
||||
if zz.IsUint64() {
|
||||
return strconv.FormatUint(zz[0], 10)
|
||||
} else {
|
||||
var zzNeg Element
|
||||
zzNeg.Neg(z)
|
||||
zzNeg.FromMont()
|
||||
if zzNeg.IsUint64() {
|
||||
return "-" + strconv.FormatUint(zzNeg[0], 10)
|
||||
}
|
||||
}
|
||||
vv := bigIntPool.Get().(*big.Int)
|
||||
defer bigIntPool.Put(vv)
|
||||
return zz.ToBigInt(vv).String()
|
||||
}
|
||||
|
||||
// ToBigInt returns z as a big.Int in Montgomery form
|
||||
func (z *Element) ToBigInt(res *big.Int) *big.Int {
|
||||
var b [Limbs * 8]byte
|
||||
binary.BigEndian.PutUint64(b[0:8], z[0])
|
||||
|
||||
return res.SetBytes(b[:])
|
||||
}
|
||||
|
||||
// ToBigIntRegular returns z as a big.Int in regular form
|
||||
func (z Element) ToBigIntRegular(res *big.Int) *big.Int {
|
||||
z.FromMont()
|
||||
return z.ToBigInt(res)
|
||||
}
|
||||
|
||||
// ToUint64Regular returns z as a uint64 in regular form
|
||||
func (z Element) ToUint64Regular() uint64 {
|
||||
z.FromMont()
|
||||
return z[0]
|
||||
}
|
||||
|
||||
// Bytes returns the regular (non montgomery) value
|
||||
// of z as a big-endian byte array.
|
||||
func (z *Element) Bytes() (res [Limbs * 8]byte) {
|
||||
_z := z.ToRegular()
|
||||
binary.BigEndian.PutUint64(res[0:8], _z[0])
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// Marshal returns the regular (non montgomery) value
|
||||
// of z as a big-endian byte slice.
|
||||
func (z *Element) Marshal() []byte {
|
||||
b := z.Bytes()
|
||||
return b[:]
|
||||
}
|
||||
|
||||
// SetBytes interprets e as the bytes of a big-endian unsigned integer,
|
||||
// sets z to that value (in Montgomery form), and returns z.
|
||||
func (z *Element) SetBytes(e []byte) *Element {
|
||||
// get a big int from our pool
|
||||
vv := bigIntPool.Get().(*big.Int)
|
||||
vv.SetBytes(e)
|
||||
|
||||
// set big int
|
||||
z.SetBigInt(vv)
|
||||
|
||||
// put temporary object back in pool
|
||||
bigIntPool.Put(vv)
|
||||
|
||||
return z
|
||||
}
|
||||
|
||||
// SetBigInt sets z to v (regular form) and returns z in Montgomery form
|
||||
func (z *Element) SetBigInt(v *big.Int) *Element {
|
||||
z.SetZero()
|
||||
|
||||
var zero big.Int
|
||||
|
||||
// fast path
|
||||
c := v.Cmp(&_modulus)
|
||||
if c == 0 {
|
||||
// v == 0
|
||||
return z
|
||||
} else if c != 1 && v.Cmp(&zero) != -1 {
|
||||
// 0 < v < q
|
||||
return z.setBigInt(v)
|
||||
}
|
||||
|
||||
// get temporary big int from the pool
|
||||
vv := bigIntPool.Get().(*big.Int)
|
||||
|
||||
// copy input + modular reduction
|
||||
vv.Set(v)
|
||||
vv.Mod(v, &_modulus)
|
||||
|
||||
// set big int byte value
|
||||
z.setBigInt(vv)
|
||||
|
||||
// release object into pool
|
||||
bigIntPool.Put(vv)
|
||||
return z
|
||||
}
|
||||
|
||||
// setBigInt assumes 0 <= v < q
|
||||
func (z *Element) setBigInt(v *big.Int) *Element {
|
||||
vBits := v.Bits()
|
||||
|
||||
if bits.UintSize == 64 {
|
||||
for i := 0; i < len(vBits); i++ {
|
||||
z[i] = uint64(vBits[i])
|
||||
}
|
||||
} else {
|
||||
for i := 0; i < len(vBits); i++ {
|
||||
if i%2 == 0 {
|
||||
z[i/2] = uint64(vBits[i])
|
||||
} else {
|
||||
z[i/2] |= uint64(vBits[i]) << 32
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return z.ToMont()
|
||||
}
|
||||
|
||||
// SetString creates a big.Int with s (in base 10) and calls SetBigInt on z
|
||||
func (z *Element) SetString(s string) *Element {
|
||||
// get temporary big int from the pool
|
||||
vv := bigIntPool.Get().(*big.Int)
|
||||
|
||||
if _, ok := vv.SetString(s, 10); !ok {
|
||||
panic("Element.SetString failed -> can't parse number in base10 into a big.Int")
|
||||
}
|
||||
z.SetBigInt(vv)
|
||||
|
||||
// release object into pool
|
||||
bigIntPool.Put(vv)
|
||||
|
||||
return z
|
||||
}
|
||||
|
||||
var (
|
||||
_bLegendreExponentElement *big.Int
|
||||
_bSqrtExponentElement *big.Int
|
||||
)
|
||||
|
||||
func init() {
|
||||
_bLegendreExponentElement, _ = new(big.Int).SetString("7fffffff80000000", 16)
|
||||
const sqrtExponentElement = "7fffffff"
|
||||
_bSqrtExponentElement, _ = new(big.Int).SetString(sqrtExponentElement, 16)
|
||||
}
|
||||
|
||||
// Legendre returns the Legendre symbol of z (either +1, -1, or 0.)
|
||||
func (z *Element) Legendre() int {
|
||||
var l Element
|
||||
// z^((q-1)/2)
|
||||
l.Exp(*z, _bLegendreExponentElement)
|
||||
|
||||
if l.IsZero() {
|
||||
return 0
|
||||
}
|
||||
|
||||
// if l == 1
|
||||
if l[0] == 4294967295 {
|
||||
return 1
|
||||
}
|
||||
return -1
|
||||
}
|
||||
|
||||
// Sqrt z = √x mod q
|
||||
// if the square root doesn't exist (x is not a square mod q)
|
||||
// Sqrt leaves z unchanged and returns nil
|
||||
func (z *Element) Sqrt(x *Element) *Element {
|
||||
// q ≡ 1 (mod 4)
|
||||
// see modSqrtTonelliShanks in math/big/int.go
|
||||
// using https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
|
||||
|
||||
var y, b, t, w Element
|
||||
// w = x^((s-1)/2))
|
||||
w.Exp(*x, _bSqrtExponentElement)
|
||||
|
||||
// y = x^((s+1)/2)) = w * x
|
||||
y.Mul(x, &w)
|
||||
|
||||
// b = x^s = w * w * x = y * x
|
||||
b.Mul(&w, &y)
|
||||
|
||||
// g = nonResidue ^ s
|
||||
var g = Element{
|
||||
15733474329512464024,
|
||||
}
|
||||
r := uint64(32)
|
||||
|
||||
// compute legendre symbol
|
||||
// t = x^((q-1)/2) = r-1 squaring of x^s
|
||||
t = b
|
||||
for i := uint64(0); i < r-1; i++ {
|
||||
t.Square(&t)
|
||||
}
|
||||
if t.IsZero() {
|
||||
return z.SetZero()
|
||||
}
|
||||
if !(t[0] == 4294967295) {
|
||||
// t != 1, we don't have a square root
|
||||
return nil
|
||||
}
|
||||
for {
|
||||
var m uint64
|
||||
t = b
|
||||
|
||||
// for t != 1
|
||||
for !(t[0] == 4294967295) {
|
||||
t.Square(&t)
|
||||
m++
|
||||
}
|
||||
|
||||
if m == 0 {
|
||||
return z.Set(&y)
|
||||
}
|
||||
// t = g^(2^(r-m-1)) mod q
|
||||
ge := int(r - m - 1)
|
||||
t = g
|
||||
for ge > 0 {
|
||||
t.Square(&t)
|
||||
ge--
|
||||
}
|
||||
|
||||
g.Square(&t)
|
||||
y.Mul(&y, &t)
|
||||
b.Mul(&b, &g)
|
||||
r = m
|
||||
}
|
||||
}
|
||||
|
||||
// Inverse z = x^-1 mod q
|
||||
// note: allocates a big.Int (math/big)
|
||||
func (z *Element) Inverse(x *Element) *Element {
|
||||
var _xNonMont big.Int
|
||||
x.ToBigIntRegular(&_xNonMont)
|
||||
_xNonMont.ModInverse(&_xNonMont, Modulus())
|
||||
z.SetBigInt(&_xNonMont)
|
||||
return z
|
||||
}
|
||||
113
ffg/element_fuzz.go
Normal file
113
ffg/element_fuzz.go
Normal file
@@ -0,0 +1,113 @@
|
||||
//go:build gofuzz
|
||||
// +build gofuzz
|
||||
|
||||
// Copyright 2020 ConsenSys Software Inc.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
||||
|
||||
package ffg
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"io"
|
||||
"math/big"
|
||||
"math/bits"
|
||||
)
|
||||
|
||||
const (
|
||||
fuzzInteresting = 1
|
||||
fuzzNormal = 0
|
||||
fuzzDiscard = -1
|
||||
)
|
||||
|
||||
// Fuzz arithmetic operations fuzzer
|
||||
func Fuzz(data []byte) int {
|
||||
r := bytes.NewReader(data)
|
||||
|
||||
var e1, e2 Element
|
||||
e1.SetRawBytes(r)
|
||||
e2.SetRawBytes(r)
|
||||
|
||||
{
|
||||
// mul assembly
|
||||
|
||||
var c, _c Element
|
||||
a, _a, b, _b := e1, e1, e2, e2
|
||||
c.Mul(&a, &b)
|
||||
_mulGeneric(&_c, &_a, &_b)
|
||||
|
||||
if !c.Equal(&_c) {
|
||||
panic("mul asm != mul generic on Element")
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
// inverse
|
||||
inv := e1
|
||||
inv.Inverse(&inv)
|
||||
|
||||
var bInv, b1, b2 big.Int
|
||||
e1.ToBigIntRegular(&b1)
|
||||
bInv.ModInverse(&b1, Modulus())
|
||||
inv.ToBigIntRegular(&b2)
|
||||
|
||||
if b2.Cmp(&bInv) != 0 {
|
||||
panic("inverse operation doesn't match big int result")
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
// a + -a == 0
|
||||
a, b := e1, e1
|
||||
b.Neg(&b)
|
||||
a.Add(&a, &b)
|
||||
if !a.IsZero() {
|
||||
panic("a + -a != 0")
|
||||
}
|
||||
}
|
||||
|
||||
return fuzzNormal
|
||||
|
||||
}
|
||||
|
||||
// SetRawBytes reads up to Bytes (bytes needed to represent Element) from reader
|
||||
// and interpret it as big endian uint64
|
||||
// used for fuzzing purposes only
|
||||
func (z *Element) SetRawBytes(r io.Reader) {
|
||||
|
||||
buf := make([]byte, 8)
|
||||
|
||||
for i := 0; i < len(z); i++ {
|
||||
if _, err := io.ReadFull(r, buf); err != nil {
|
||||
goto eof
|
||||
}
|
||||
z[i] = binary.BigEndian.Uint64(buf[:])
|
||||
}
|
||||
eof:
|
||||
z[0] %= qElement[0]
|
||||
|
||||
if z.BiggerModulus() {
|
||||
var b uint64
|
||||
z[0], b = bits.Sub64(z[0], qElement[0], 0)
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (z *Element) BiggerModulus() bool {
|
||||
|
||||
return z[0] >= qElement[0]
|
||||
}
|
||||
17
ffg/element_ops_amd64.go
Normal file
17
ffg/element_ops_amd64.go
Normal file
@@ -0,0 +1,17 @@
|
||||
// Copyright 2020 ConsenSys Software Inc.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
||||
|
||||
package ffg
|
||||
75
ffg/element_ops_noasm.go
Normal file
75
ffg/element_ops_noasm.go
Normal file
@@ -0,0 +1,75 @@
|
||||
// Copyright 2020 ConsenSys Software Inc.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Code generated by consensys/gnark-crypto DO NOT EDIT
|
||||
|
||||
package ffg
|
||||
|
||||
// /!\ WARNING /!\
|
||||
// this code has not been audited and is provided as-is. In particular,
|
||||
// there is no security guarantees such as constant time implementation
|
||||
// or side-channel attack resistance
|
||||
// /!\ WARNING /!\
|
||||
|
||||
// MulBy3 x *= 3
|
||||
func MulBy3(x *Element) {
|
||||
mulByConstant(x, 3)
|
||||
}
|
||||
|
||||
// MulBy5 x *= 5
|
||||
func MulBy5(x *Element) {
|
||||
mulByConstant(x, 5)
|
||||
}
|
||||
|
||||
// MulBy13 x *= 13
|
||||
func MulBy13(x *Element) {
|
||||
mulByConstant(x, 13)
|
||||
}
|
||||
|
||||
// Butterfly sets
|
||||
// a = a + b
|
||||
// b = a - b
|
||||
func Butterfly(a, b *Element) {
|
||||
_butterflyGeneric(a, b)
|
||||
}
|
||||
|
||||
func mul(z, x, y *Element) {
|
||||
_mulGeneric(z, x, y)
|
||||
}
|
||||
|
||||
// FromMont converts z in place (i.e. mutates) from Montgomery to regular representation
|
||||
// sets and returns z = z * 1
|
||||
func fromMont(z *Element) {
|
||||
_fromMontGeneric(z)
|
||||
}
|
||||
|
||||
func add(z, x, y *Element) {
|
||||
_addGeneric(z, x, y)
|
||||
}
|
||||
|
||||
func double(z, x *Element) {
|
||||
_doubleGeneric(z, x)
|
||||
}
|
||||
|
||||
func sub(z, x, y *Element) {
|
||||
_subGeneric(z, x, y)
|
||||
}
|
||||
|
||||
func neg(z, x *Element) {
|
||||
_negGeneric(z, x)
|
||||
}
|
||||
|
||||
func reduce(z *Element) {
|
||||
_reduceGeneric(z)
|
||||
}
|
||||
1833
ffg/element_test.go
Normal file
1833
ffg/element_test.go
Normal file
File diff suppressed because it is too large
Load Diff
131
goldenposeidon/constants.go
Normal file
131
goldenposeidon/constants.go
Normal file
@@ -0,0 +1,131 @@
|
||||
package poseidon
|
||||
|
||||
import "github.com/iden3/go-iden3-crypto/ffg"
|
||||
|
||||
const (
|
||||
NROUNDSF = 8 //nolint:golint
|
||||
NROUNDSP = 22 //nolint:golint
|
||||
CAPLEN = 4 //nolint:golint
|
||||
mLen = 12
|
||||
)
|
||||
|
||||
var (
|
||||
mcirc = []uint64{17, 15, 41, 16, 2, 28, 13, 13, 39, 18, 34, 20}
|
||||
mdiag = []uint64{8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
|
||||
|
||||
c = []uint64{
|
||||
0xb585f766f2144405, 0x7746a55f43921ad7, 0xb2fb0d31cee799b4, 0x0f6760a4803427d7,
|
||||
0xe10d666650f4e012, 0x8cae14cb07d09bf1, 0xd438539c95f63e9f, 0xef781c7ce35b4c3d,
|
||||
0xcdc4a239b0c44426, 0x277fa208bf337bff, 0xe17653a29da578a1, 0xc54302f225db2c76,
|
||||
0x86287821f722c881, 0x59cd1a8a41c18e55, 0xc3b919ad495dc574, 0xa484c4c5ef6a0781,
|
||||
0x308bbd23dc5416cc, 0x6e4a40c18f30c09c, 0x9a2eedb70d8f8cfa, 0xe360c6e0ae486f38,
|
||||
0xd5c7718fbfc647fb, 0xc35eae071903ff0b, 0x849c2656969c4be7, 0xc0572c8c08cbbbad,
|
||||
0xe9fa634a21de0082, 0xf56f6d48959a600d, 0xf7d713e806391165, 0x8297132b32825daf,
|
||||
0xad6805e0e30b2c8a, 0xac51d9f5fcf8535e, 0x502ad7dc18c2ad87, 0x57a1550c110b3041,
|
||||
0x66bbd30e6ce0e583, 0x0da2abef589d644e, 0xf061274fdb150d61, 0x28b8ec3ae9c29633,
|
||||
0x92a756e67e2b9413, 0x70e741ebfee96586, 0x019d5ee2af82ec1c, 0x6f6f2ed772466352,
|
||||
0x7cf416cfe7e14ca1, 0x61df517b86a46439, 0x85dc499b11d77b75, 0x4b959b48b9c10733,
|
||||
0xe8be3e5da8043e57, 0xf5c0bc1de6da8699, 0x40b12cbf09ef74bf, 0xa637093ecb2ad631,
|
||||
0x3cc3f892184df408, 0x2e479dc157bf31bb, 0x6f49de07a6234346, 0x213ce7bede378d7b,
|
||||
0x5b0431345d4dea83, 0xa2de45780344d6a1, 0x7103aaf94a7bf308, 0x5326fc0d97279301,
|
||||
0xa9ceb74fec024747, 0x27f8ec88bb21b1a3, 0xfceb4fda1ded0893, 0xfac6ff1346a41675,
|
||||
0x7131aa45268d7d8c, 0x9351036095630f9f, 0xad535b24afc26bfb, 0x4627f5c6993e44be,
|
||||
0x645cf794b8f1cc58, 0x241c70ed0af61617, 0xacb8e076647905f1, 0x3737e9db4c4f474d,
|
||||
0xe7ea5e33e75fffb6, 0x90dee49fc9bfc23a, 0xd1b1edf76bc09c92, 0x0b65481ba645c602,
|
||||
0x99ad1aab0814283b, 0x438a7c91d416ca4d, 0xb60de3bcc5ea751c, 0xc99cab6aef6f58bc,
|
||||
0x69a5ed92a72ee4ff, 0x5e7b329c1ed4ad71, 0x5fc0ac0800144885, 0x32db829239774eca,
|
||||
0x0ade699c5830f310, 0x7cc5583b10415f21, 0x85df9ed2e166d64f, 0x6604df4fee32bcb1,
|
||||
0xeb84f608da56ef48, 0xda608834c40e603d, 0x8f97fe408061f183, 0xa93f485c96f37b89,
|
||||
0x6704e8ee8f18d563, 0xcee3e9ac1e072119, 0x510d0e65e2b470c1, 0xf6323f486b9038f0,
|
||||
0x0b508cdeffa5ceef, 0xf2417089e4fb3cbd, 0x60e75c2890d15730, 0xa6217d8bf660f29c,
|
||||
0x7159cd30c3ac118e, 0x839b4e8fafead540, 0x0d3f3e5e82920adc, 0x8f7d83bddee7bba8,
|
||||
0x780f2243ea071d06, 0xeb915845f3de1634, 0xd19e120d26b6f386, 0x016ee53a7e5fecc6,
|
||||
0xcb5fd54e7933e477, 0xacb8417879fd449f, 0x9c22190be7f74732, 0x5d693c1ba3ba3621,
|
||||
0xdcef0797c2b69ec7, 0x3d639263da827b13, 0xe273fd971bc8d0e7, 0x418f02702d227ed5,
|
||||
0x8c25fda3b503038c, 0x2cbaed4daec8c07c, 0x5f58e6afcdd6ddc2, 0x284650ac5e1b0eba,
|
||||
0x635b337ee819dab5, 0x9f9a036ed4f2d49f, 0xb93e260cae5c170e, 0xb0a7eae879ddb76d,
|
||||
0xd0762cbc8ca6570c, 0x34c6efb812b04bf5, 0x40bf0ab5fa14c112, 0xb6b570fc7c5740d3,
|
||||
0x5a27b9002de33454, 0xb1a5b165b6d2b2d2, 0x8722e0ace9d1be22, 0x788ee3b37e5680fb,
|
||||
0x14a726661551e284, 0x98b7672f9ef3b419, 0xbb93ae776bb30e3a, 0x28fd3b046380f850,
|
||||
0x30a4680593258387, 0x337dc00c61bd9ce1, 0xd5eca244c7a4ff1d, 0x7762638264d279bd,
|
||||
0xc1e434bedeefd767, 0x0299351a53b8ec22, 0xb2d456e4ad251b80, 0x3e9ed1fda49cea0b,
|
||||
0x2972a92ba450bed8, 0x20216dd77be493de, 0xadffe8cf28449ec6, 0x1c4dbb1c4c27d243,
|
||||
0x15a16a8a8322d458, 0x388a128b7fd9a609, 0x2300e5d6baedf0fb, 0x2f63aa8647e15104,
|
||||
0xf1c36ce86ecec269, 0x27181125183970c9, 0xe584029370dca96d, 0x4d9bbc3e02f1cfb2,
|
||||
0xea35bc29692af6f8, 0x18e21b4beabb4137, 0x1e3b9fc625b554f4, 0x25d64362697828fd,
|
||||
0x5a3f1bb1c53a9645, 0xdb7f023869fb8d38, 0xb462065911d4e1fc, 0x49c24ae4437d8030,
|
||||
0xd793862c112b0566, 0xaadd1106730d8feb, 0xc43b6e0e97b0d568, 0xe29024c18ee6fca2,
|
||||
0x5e50c27535b88c66, 0x10383f20a4ff9a87, 0x38e8ee9d71a45af8, 0xdd5118375bf1a9b9,
|
||||
0x775005982d74d7f7, 0x86ab99b4dde6c8b0, 0xb1204f603f51c080, 0xef61ac8470250ecf,
|
||||
0x1bbcd90f132c603f, 0x0cd1dabd964db557, 0x11a3ae5beb9d1ec9, 0xf755bfeea585d11d,
|
||||
0xa3b83250268ea4d7, 0x516306f4927c93af, 0xddb4ac49c9efa1da, 0x64bb6dec369d4418,
|
||||
0xf9cc95c22b4c1fcc, 0x08d37f755f4ae9f6, 0xeec49b613478675b, 0xf143933aed25e0b0,
|
||||
0xe4c5dd8255dfc622, 0xe7ad7756f193198e, 0x92c2318b87fff9cb, 0x739c25f8fd73596d,
|
||||
0x5636cac9f16dfed0, 0xdd8f909a938e0172, 0xc6401fe115063f5b, 0x8ad97b33f1ac1455,
|
||||
0x0c49366bb25e8513, 0x0784d3d2f1698309, 0x530fb67ea1809a81, 0x410492299bb01f49,
|
||||
0x139542347424b9ac, 0x9cb0bd5ea1a1115e, 0x02e3f615c38f49a1, 0x985d4f4a9c5291ef,
|
||||
0x775b9feafdcd26e7, 0x304265a6384f0f2d, 0x593664c39773012c, 0x4f0a2e5fb028f2ce,
|
||||
0xdd611f1000c17442, 0xd8185f9adfea4fd0, 0xef87139ca9a3ab1e, 0x3ba71336c34ee133,
|
||||
0x7d3a455d56b70238, 0x660d32e130182684, 0x297a863f48cd1f43, 0x90e0a736a751ebb7,
|
||||
0x549f80ce550c4fd3, 0x0f73b2922f38bd64, 0x16bf1f73fb7a9c3f, 0x6d1f5a59005bec17,
|
||||
0x02ff876fa5ef97c4, 0xc5cb72a2a51159b0, 0x8470f39d2d5c900e, 0x25abb3f1d39fcb76,
|
||||
0x23eb8cc9b372442f, 0xd687ba55c64f6364, 0xda8d9e90fd8ff158, 0xe3cbdc7d2fe45ea7,
|
||||
0xb9a8c9b3aee52297, 0xc0d28a5c10960bd3, 0x45d7ac9b68f71a34, 0xeeb76e397069e804,
|
||||
0x3d06c8bd1514e2d9, 0x9c9c98207cb10767, 0x65700b51aedfb5ef, 0x911f451539869408,
|
||||
0x7ae6849fbc3a0ec6, 0x3bb340eba06afe7e, 0xb46e9d8b682ea65e, 0x8dcf22f9a3b34356,
|
||||
0x77bdaeda586257a7, 0xf19e400a5104d20d, 0xc368a348e46d950f, 0x9ef1cd60e679f284,
|
||||
0xe89cd854d5d01d33, 0x5cd377dc8bb882a2, 0xa7b0fb7883eee860, 0x7684403ec392950d,
|
||||
0x5fa3f06f4fed3b52, 0x8df57ac11bc04831, 0x2db01efa1e1e1897, 0x54846de4aadb9ca2,
|
||||
0xba6745385893c784, 0x541d496344d2c75b, 0xe909678474e687fe, 0xdfe89923f6c9c2ff,
|
||||
0xece5a71e0cfedc75, 0x5ff98fd5d51fe610, 0x83e8941918964615, 0x5922040b47f150c1,
|
||||
0xf97d750e3dd94521, 0x5080d4c2b86f56d7, 0xa7de115b56c78d70, 0x6a9242ac87538194,
|
||||
0xf7856ef7f9173e44, 0x2265fc92feb0dc09, 0x17dfc8e4f7ba8a57, 0x9001a64209f21db8,
|
||||
0x90004c1371b893c5, 0xb932b7cf752e5545, 0xa0b1df81b6fe59fc, 0x8ef1dd26770af2c2,
|
||||
0x0541a4f9cfbeed35, 0x9e61106178bfc530, 0xb3767e80935d8af2, 0x0098d5782065af06,
|
||||
0x31d191cd5c1466c7, 0x410fefafa319ac9d, 0xbdf8f242e316c4ab, 0x9e8cd55b57637ed0,
|
||||
0xde122bebe9a39368, 0x4d001fd58f002526, 0xca6637000eb4a9f8, 0x2f2339d624f91f78,
|
||||
0x6d1a7918c80df518, 0xdf9a4939342308e9, 0xebc2151ee6c8398c, 0x03cc2ba8a1116515,
|
||||
0xd341d037e840cf83, 0x387cb5d25af4afcc, 0xbba2515f22909e87, 0x7248fe7705f38e47,
|
||||
0x4d61e56a525d225a, 0x262e963c8da05d3d, 0x59e89b094d220ec2, 0x055d5b52b78b9c5e,
|
||||
0x82b27eb33514ef99, 0xd30094ca96b7ce7b, 0xcf5cb381cd0a1535, 0xfeed4db6919e5a7c,
|
||||
0x41703f53753be59f, 0x5eeea940fcde8b6f, 0x4cd1f1b175100206, 0x4a20358574454ec0,
|
||||
0x1478d361dbbf9fac, 0x6f02dc07d141875c, 0x296a202ed8e556a2, 0x2afd67999bf32ee5,
|
||||
0x7acfd96efa95491d, 0x6798ba0c0abb2c6d, 0x34c6f57b26c92122, 0x5736e1bad206b5de,
|
||||
0x20057d2a0056521b, 0x3dea5bd5d0578bd7, 0x16e50d897d4634ac, 0x29bff3ecb9b7a6e3,
|
||||
0x475cd3205a3bdcde, 0x18a42105c31b7e88, 0x023e7414af663068, 0x15147108121967d7,
|
||||
0xe4a3dff1d7d6fef9, 0x01a8d1a588085737, 0x11b4c74eda62beef, 0xe587cc0d69a73346,
|
||||
0x1ff7327017aa2a6e, 0x594e29c42473d06b, 0xf6f31db1899b12d5, 0xc02ac5e47312d3ca,
|
||||
0xe70201e960cb78b8, 0x6f90ff3b6a65f108, 0x42747a7245e7fa84, 0xd1f507e43ab749b2,
|
||||
0x1c86d265f15750cd, 0x3996ce73dd832c1c, 0x8e7fba02983224bd, 0xba0dec7103255dd4,
|
||||
0x9e9cbd781628fc5b, 0xdae8645996edd6a5, 0xdebe0853b1a1d378, 0xa49229d24d014343,
|
||||
0x7be5b9ffda905e1c, 0xa3c95eaec244aa30, 0x0230bca8f4df0544, 0x4135c2bebfe148c6,
|
||||
0x166fc0cc438a3c72, 0x3762b59a8ae83efa, 0xe8928a4c89114750, 0x2a440b51a4945ee5,
|
||||
0x80cefd2b7d99ff83, 0xbb9879c6e61fd62a, 0x6e7c8f1a84265034, 0x164bb2de1bbeddc8,
|
||||
0xf3c12fe54d5c653b, 0x40b9e922ed9771e2, 0x551f5b0fbe7b1840, 0x25032aa7c4cb1811,
|
||||
0xaaed34074b164346, 0x8ffd96bbf9c9c81d, 0x70fc91eb5937085c, 0x7f795e2a5f915440,
|
||||
0x4543d9df5476d3cb, 0xf172d73e004fc90d, 0xdfd1c4febcc81238, 0xbc8dfb627fe558fc,
|
||||
}
|
||||
|
||||
// C is a constant array of element
|
||||
C []*ffg.Element
|
||||
// M is a matrix
|
||||
M [][]*ffg.Element
|
||||
)
|
||||
|
||||
func init() {
|
||||
for i := 0; i < len(c); i++ {
|
||||
C = append(C, ffg.NewElementFromUint64(c[i]))
|
||||
}
|
||||
|
||||
for i := 0; i < mLen; i++ {
|
||||
var row []*ffg.Element
|
||||
for j := 0; j < mLen; j++ {
|
||||
ele := ffg.NewElementFromUint64(mcirc[(-i+j+mLen)%mLen])
|
||||
if i == j {
|
||||
ele = ffg.NewElementFromUint64(mcirc[0] + mdiag[i])
|
||||
}
|
||||
row = append(row, ele)
|
||||
}
|
||||
M = append(M, row)
|
||||
}
|
||||
}
|
||||
77
goldenposeidon/poseidon.go
Normal file
77
goldenposeidon/poseidon.go
Normal file
@@ -0,0 +1,77 @@
|
||||
package poseidon
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
|
||||
"github.com/iden3/go-iden3-crypto/ffg"
|
||||
)
|
||||
|
||||
func zero() *ffg.Element {
|
||||
return ffg.NewElement()
|
||||
}
|
||||
|
||||
// exp7 performs x^7 mod p
|
||||
func exp7(a *ffg.Element) {
|
||||
a.Exp(*a, big.NewInt(7)) //nolint:gomnd
|
||||
}
|
||||
|
||||
// exp7state perform exp7 for whole state
|
||||
func exp7state(state []*ffg.Element) {
|
||||
for i := 0; i < len(state); i++ {
|
||||
exp7(state[i])
|
||||
}
|
||||
}
|
||||
|
||||
// ark computes Add-Round Key, from the paper https://eprint.iacr.org/2019/458.pdf
|
||||
func ark(state []*ffg.Element, it int) {
|
||||
for i := 0; i < len(state); i++ {
|
||||
state[i].Add(state[i], C[it+i])
|
||||
}
|
||||
}
|
||||
|
||||
// mix returns [[matrix]] * [vector]
|
||||
func mix(state []*ffg.Element) []*ffg.Element {
|
||||
mul := zero()
|
||||
newState := make([]*ffg.Element, mLen)
|
||||
for i := 0; i < mLen; i++ {
|
||||
newState[i] = zero()
|
||||
}
|
||||
for i := 0; i < mLen; i++ {
|
||||
newState[i].SetUint64(0)
|
||||
for j := 0; j < mLen; j++ {
|
||||
mul.Mul(M[i][j], state[j])
|
||||
newState[i].Add(newState[i], mul)
|
||||
}
|
||||
}
|
||||
return newState
|
||||
}
|
||||
|
||||
// Hash computes the Poseidon hash for the given inputs
|
||||
func Hash(inpBI [NROUNDSF]uint64, capBI [CAPLEN]uint64) ([CAPLEN]uint64, error) {
|
||||
state := make([]*ffg.Element, mLen)
|
||||
for i := 0; i < NROUNDSF; i++ {
|
||||
state[i] = ffg.NewElement().SetUint64(inpBI[i])
|
||||
}
|
||||
for i := 0; i < CAPLEN; i++ {
|
||||
state[i+NROUNDSF] = ffg.NewElement().SetUint64(capBI[i])
|
||||
}
|
||||
|
||||
for r := 0; r < NROUNDSF+NROUNDSP; r++ {
|
||||
ark(state, r*mLen)
|
||||
|
||||
if r < NROUNDSF/2 || r >= NROUNDSF/2+NROUNDSP {
|
||||
exp7state(state)
|
||||
} else {
|
||||
exp7(state[0])
|
||||
}
|
||||
|
||||
state = mix(state)
|
||||
}
|
||||
|
||||
return [CAPLEN]uint64{
|
||||
state[0].ToUint64Regular(),
|
||||
state[1].ToUint64Regular(),
|
||||
state[2].ToUint64Regular(),
|
||||
state[3].ToUint64Regular(),
|
||||
}, nil
|
||||
}
|
||||
94
goldenposeidon/poseidon_test.go
Normal file
94
goldenposeidon/poseidon_test.go
Normal file
@@ -0,0 +1,94 @@
|
||||
package poseidon
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
const prime uint64 = 18446744069414584321
|
||||
|
||||
func TestPoseidonHash(t *testing.T) {
|
||||
b0 := uint64(0)
|
||||
b1 := uint64(1)
|
||||
bm1 := prime - 1
|
||||
bM := prime
|
||||
|
||||
h, err := Hash([NROUNDSF]uint64{b0, b0, b0, b0, b0, b0, b0, b0}, [CAPLEN]uint64{b0, b0, b0, b0})
|
||||
assert.Nil(t, err)
|
||||
assert.Equal(t,
|
||||
[CAPLEN]uint64{
|
||||
4330397376401421145,
|
||||
14124799381142128323,
|
||||
8742572140681234676,
|
||||
14345658006221440202,
|
||||
}, h,
|
||||
)
|
||||
|
||||
h, err = Hash([NROUNDSF]uint64{b1, b1, b1, b1, b1, b1, b1, b1}, [CAPLEN]uint64{b1, b1, b1, b1})
|
||||
assert.Nil(t, err)
|
||||
assert.Equal(t,
|
||||
[CAPLEN]uint64{
|
||||
16428316519797902711,
|
||||
13351830238340666928,
|
||||
682362844289978626,
|
||||
12150588177266359240,
|
||||
}, h,
|
||||
)
|
||||
|
||||
h, err = Hash([NROUNDSF]uint64{b1, b1, b1, b1, b1, b1, b1, b1}, [CAPLEN]uint64{b1, b1, b1, b1})
|
||||
assert.Nil(t, err)
|
||||
assert.Equal(t,
|
||||
[CAPLEN]uint64{
|
||||
16428316519797902711,
|
||||
13351830238340666928,
|
||||
682362844289978626,
|
||||
12150588177266359240,
|
||||
}, h,
|
||||
)
|
||||
|
||||
h, err = Hash(
|
||||
[NROUNDSF]uint64{bm1, bm1, bm1, bm1, bm1, bm1, bm1, bm1},
|
||||
[CAPLEN]uint64{bm1, bm1, bm1, bm1},
|
||||
)
|
||||
assert.Nil(t, err)
|
||||
assert.Equal(t,
|
||||
[CAPLEN]uint64{
|
||||
13691089994624172887,
|
||||
15662102337790434313,
|
||||
14940024623104903507,
|
||||
10772674582659927682,
|
||||
}, h,
|
||||
)
|
||||
|
||||
h, err = Hash([NROUNDSF]uint64{bM, bM, bM, bM, bM, bM, bM, bM}, [CAPLEN]uint64{b0, b0, b0, b0})
|
||||
assert.Nil(t, err)
|
||||
assert.Equal(t,
|
||||
[CAPLEN]uint64{
|
||||
4330397376401421145,
|
||||
14124799381142128323,
|
||||
8742572140681234676,
|
||||
14345658006221440202,
|
||||
}, h,
|
||||
)
|
||||
|
||||
h, err = Hash([NROUNDSF]uint64{
|
||||
uint64(923978),
|
||||
uint64(235763497586),
|
||||
uint64(9827635653498),
|
||||
uint64(112870),
|
||||
uint64(289273673480943876),
|
||||
uint64(230295874986745876),
|
||||
uint64(6254867324987),
|
||||
uint64(2087),
|
||||
}, [CAPLEN]uint64{b0, b0, b0, b0})
|
||||
assert.Nil(t, err)
|
||||
assert.Equal(t,
|
||||
[CAPLEN]uint64{
|
||||
1892171027578617759,
|
||||
984732815927439256,
|
||||
7866041765487844082,
|
||||
8161503938059336191,
|
||||
}, h,
|
||||
)
|
||||
}
|
||||
Reference in New Issue
Block a user