mirror of
https://github.com/arnaucube/go-iden3-crypto.git
synced 2026-02-07 11:36:41 +01:00
Compare commits
1 Commits
feature/go
...
feature/bb
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8a260d66d3 |
@@ -4,12 +4,5 @@ language: go
|
|||||||
go:
|
go:
|
||||||
- "1.12"
|
- "1.12"
|
||||||
|
|
||||||
jobs:
|
|
||||||
include:
|
|
||||||
- name: "Unit Tests 64 bit arch"
|
|
||||||
env: GOARCH="amd64"
|
|
||||||
- name: "Unit Test 32 bit arch"
|
|
||||||
env: GOARCH="386"
|
|
||||||
|
|
||||||
env:
|
env:
|
||||||
- GO111MODULE=on
|
- GO111MODULE=on
|
||||||
|
|||||||
@@ -5,14 +5,15 @@ import (
|
|||||||
"math/big"
|
"math/big"
|
||||||
|
|
||||||
"github.com/iden3/go-iden3-crypto/constants"
|
"github.com/iden3/go-iden3-crypto/constants"
|
||||||
|
"github.com/iden3/go-iden3-crypto/ff"
|
||||||
"github.com/iden3/go-iden3-crypto/utils"
|
"github.com/iden3/go-iden3-crypto/utils"
|
||||||
)
|
)
|
||||||
|
|
||||||
// A is one of the babyjub constants.
|
// A is one of the babyjub constants.
|
||||||
var A *big.Int
|
var A *ff.Element
|
||||||
|
|
||||||
// D is one of the babyjub constants.
|
// D is one of the babyjub constants.
|
||||||
var D *big.Int
|
var D *ff.Element
|
||||||
|
|
||||||
// Order of the babyjub curve.
|
// Order of the babyjub curve.
|
||||||
var Order *big.Int
|
var Order *big.Int
|
||||||
@@ -27,29 +28,52 @@ var B8 *Point
|
|||||||
|
|
||||||
// init initializes global numbers and the subgroup base.
|
// init initializes global numbers and the subgroup base.
|
||||||
func init() {
|
func init() {
|
||||||
A = utils.NewIntFromString("168700")
|
A = ff.NewElement().SetString("168700")
|
||||||
D = utils.NewIntFromString("168696")
|
D = ff.NewElement().SetString("168696")
|
||||||
|
|
||||||
Order = utils.NewIntFromString(
|
Order = utils.NewIntFromString(
|
||||||
"21888242871839275222246405745257275088614511777268538073601725287587578984328")
|
"21888242871839275222246405745257275088614511777268538073601725287587578984328")
|
||||||
SubOrder = new(big.Int).Rsh(Order, 3)
|
SubOrder = new(big.Int).Rsh(Order, 3)
|
||||||
|
|
||||||
B8 = NewPoint()
|
B8 = NewPoint()
|
||||||
B8.X = utils.NewIntFromString(
|
B8.X = ff.NewElement().SetString(
|
||||||
"5299619240641551281634865583518297030282874472190772894086521144482721001553")
|
"5299619240641551281634865583518297030282874472190772894086521144482721001553")
|
||||||
B8.Y = utils.NewIntFromString(
|
B8.Y = ff.NewElement().SetString(
|
||||||
"16950150798460657717958625567821834550301663161624707787222815936182638968203")
|
"16950150798460657717958625567821834550301663161624707787222815936182638968203")
|
||||||
}
|
}
|
||||||
|
|
||||||
// Point represents a point of the babyjub curve.
|
// PointBI represents a point of the babyjub curve.
|
||||||
type Point struct {
|
type PointBI struct {
|
||||||
X *big.Int
|
X *big.Int
|
||||||
Y *big.Int
|
Y *big.Int
|
||||||
}
|
}
|
||||||
|
|
||||||
// NewPoint creates a new Point.
|
type Point struct {
|
||||||
|
X *ff.Element
|
||||||
|
Y *ff.Element
|
||||||
|
}
|
||||||
|
|
||||||
|
func PointBIToPoint(p *PointBI) *Point {
|
||||||
|
return &Point{
|
||||||
|
X: ff.NewElement().SetBigInt(p.X),
|
||||||
|
Y: ff.NewElement().SetBigInt(p.Y),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func PointToPointBI(p *Point) *PointBI {
|
||||||
|
return &PointBI{
|
||||||
|
X: p.X.BigInt(),
|
||||||
|
Y: p.Y.BigInt(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// NewPoint creates a new PointBI.
|
||||||
|
func NewPointBI() *PointBI {
|
||||||
|
return &PointBI{X: big.NewInt(0), Y: big.NewInt(1)}
|
||||||
|
}
|
||||||
|
|
||||||
func NewPoint() *Point {
|
func NewPoint() *Point {
|
||||||
return &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
return &Point{X: ff.NewElement().SetZero(), Y: ff.NewElement().SetOne()}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Set copies a Point c into the Point p
|
// Set copies a Point c into the Point p
|
||||||
@@ -59,44 +83,45 @@ func (p *Point) Set(c *Point) *Point {
|
|||||||
return p
|
return p
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (p *Point) Equal(q *Point) bool {
|
||||||
|
// return p.X.Cmp(q.X) == 0 && p.Y.Cmp(q.Y) == 0
|
||||||
|
return p.X.Equal(q.X) && p.Y.Equal(q.Y)
|
||||||
|
}
|
||||||
|
|
||||||
// Add adds Point a and b into res
|
// Add adds Point a and b into res
|
||||||
func (res *Point) Add(a *Point, b *Point) *Point {
|
func (res *Point) Add(a *Point, b *Point) *Point {
|
||||||
// x = (a.x * b.y + b.x * a.y) * (1 + D * a.x * b.x * a.y * b.y)^-1 mod q
|
// x = (a.x * b.y + b.x * a.y) * (1 + D * a.x * b.x * a.y * b.y)^-1 mod q
|
||||||
x1a := new(big.Int).Mul(a.X, b.Y)
|
x1a := ff.NewElement().Mul(a.X, b.Y)
|
||||||
x1b := new(big.Int).Mul(b.X, a.Y)
|
x1b := ff.NewElement().Mul(b.X, a.Y)
|
||||||
x1a.Add(x1a, x1b) // x1a = a.x * b.y + b.x * a.y
|
x1a.Add(x1a, x1b) // x1a = a.x * b.y + b.x * a.y
|
||||||
|
|
||||||
x2 := new(big.Int).Set(D)
|
x2 := ff.NewElement().Set(D)
|
||||||
x2.Mul(x2, a.X)
|
x2.Mul(x2, a.X)
|
||||||
x2.Mul(x2, b.X)
|
x2.Mul(x2, b.X)
|
||||||
x2.Mul(x2, a.Y)
|
x2.Mul(x2, a.Y)
|
||||||
x2.Mul(x2, b.Y)
|
x2.Mul(x2, b.Y)
|
||||||
x2.Add(constants.One, x2)
|
x2.Add(ff.NewElement().SetOne(), x2)
|
||||||
x2.Mod(x2, constants.Q)
|
x2.Inverse(x2) // x2 = (1 + D * a.x * b.x * a.y * b.y)^-1
|
||||||
x2.ModInverse(x2, constants.Q) // x2 = (1 + D * a.x * b.x * a.y * b.y)^-1
|
|
||||||
|
|
||||||
// y = (a.y * b.y - A * a.x * b.x) * (1 - D * a.x * b.x * a.y * b.y)^-1 mod q
|
// y = (a.y * b.y - A * a.x * b.x) * (1 - D * a.x * b.x * a.y * b.y)^-1 mod q
|
||||||
y1a := new(big.Int).Mul(a.Y, b.Y)
|
y1a := ff.NewElement().Mul(a.Y, b.Y)
|
||||||
y1b := new(big.Int).Set(A)
|
y1b := ff.NewElement().Set(A)
|
||||||
y1b.Mul(y1b, a.X)
|
y1b.Mul(y1b, a.X)
|
||||||
y1b.Mul(y1b, b.X)
|
y1b.Mul(y1b, b.X)
|
||||||
|
|
||||||
y1a.Sub(y1a, y1b) // y1a = a.y * b.y - A * a.x * b.x
|
y1a.Sub(y1a, y1b) // y1a = a.y * b.y - A * a.x * b.x
|
||||||
|
|
||||||
y2 := new(big.Int).Set(D)
|
y2 := ff.NewElement().Set(D)
|
||||||
y2.Mul(y2, a.X)
|
y2.Mul(y2, a.X)
|
||||||
y2.Mul(y2, b.X)
|
y2.Mul(y2, b.X)
|
||||||
y2.Mul(y2, a.Y)
|
y2.Mul(y2, a.Y)
|
||||||
y2.Mul(y2, b.Y)
|
y2.Mul(y2, b.Y)
|
||||||
y2.Sub(constants.One, y2)
|
y2.Sub(ff.NewElement().SetOne(), y2)
|
||||||
y2.Mod(y2, constants.Q)
|
y2.Inverse(y2) // y2 = (1 - D * a.x * b.x * a.y * b.y)^-1
|
||||||
y2.ModInverse(y2, constants.Q) // y2 = (1 - D * a.x * b.x * a.y * b.y)^-1
|
|
||||||
|
|
||||||
res.X = x1a.Mul(x1a, x2)
|
res.X = x1a.Mul(x1a, x2)
|
||||||
res.X = res.X.Mod(res.X, constants.Q)
|
|
||||||
|
|
||||||
res.Y = y1a.Mul(y1a, y2)
|
res.Y = y1a.Mul(y1a, y2)
|
||||||
res.Y = res.Y.Mod(res.Y, constants.Q)
|
|
||||||
|
|
||||||
return res
|
return res
|
||||||
}
|
}
|
||||||
@@ -104,8 +129,8 @@ func (res *Point) Add(a *Point, b *Point) *Point {
|
|||||||
// Mul multiplies the Point p by the scalar s and stores the result in res,
|
// Mul multiplies the Point p by the scalar s and stores the result in res,
|
||||||
// which is also returned.
|
// which is also returned.
|
||||||
func (res *Point) Mul(s *big.Int, p *Point) *Point {
|
func (res *Point) Mul(s *big.Int, p *Point) *Point {
|
||||||
res.X = big.NewInt(0)
|
res.X = ff.NewElement().SetZero()
|
||||||
res.Y = big.NewInt(1)
|
res.Y = ff.NewElement().SetOne()
|
||||||
exp := NewPoint().Set(p)
|
exp := NewPoint().Set(p)
|
||||||
|
|
||||||
for i := 0; i < s.BitLen(); i++ {
|
for i := 0; i < s.BitLen(); i++ {
|
||||||
@@ -120,25 +145,21 @@ func (res *Point) Mul(s *big.Int, p *Point) *Point {
|
|||||||
|
|
||||||
// InCurve returns true when the Point p is in the babyjub curve.
|
// InCurve returns true when the Point p is in the babyjub curve.
|
||||||
func (p *Point) InCurve() bool {
|
func (p *Point) InCurve() bool {
|
||||||
x2 := new(big.Int).Set(p.X)
|
x2 := ff.NewElement().Set(p.X)
|
||||||
x2.Mul(x2, x2)
|
x2.Mul(x2, x2)
|
||||||
x2.Mod(x2, constants.Q)
|
|
||||||
|
|
||||||
y2 := new(big.Int).Set(p.Y)
|
y2 := ff.NewElement().Set(p.Y)
|
||||||
y2.Mul(y2, y2)
|
y2.Mul(y2, y2)
|
||||||
y2.Mod(y2, constants.Q)
|
|
||||||
|
|
||||||
a := new(big.Int).Mul(A, x2)
|
a := ff.NewElement().Mul(A, x2)
|
||||||
a.Add(a, y2)
|
a.Add(a, y2)
|
||||||
a.Mod(a, constants.Q)
|
|
||||||
|
|
||||||
b := new(big.Int).Set(D)
|
b := ff.NewElement().Set(D)
|
||||||
b.Mul(b, x2)
|
b.Mul(b, x2)
|
||||||
b.Mul(b, y2)
|
b.Mul(b, y2)
|
||||||
b.Add(constants.One, b)
|
b.Add(ff.NewElement().SetOne(), b)
|
||||||
b.Mod(b, constants.Q)
|
|
||||||
|
|
||||||
return a.Cmp(b) == 0
|
return a.Equal(b)
|
||||||
}
|
}
|
||||||
|
|
||||||
// InSubGroup returns true when the Point p is in the subgroup of the babyjub
|
// InSubGroup returns true when the Point p is in the subgroup of the babyjub
|
||||||
@@ -148,7 +169,7 @@ func (p *Point) InSubGroup() bool {
|
|||||||
return false
|
return false
|
||||||
}
|
}
|
||||||
res := NewPoint().Mul(SubOrder, p)
|
res := NewPoint().Mul(SubOrder, p)
|
||||||
return (res.X.Cmp(constants.Zero) == 0) && (res.Y.Cmp(constants.One) == 0)
|
return res.X.Equal(ff.NewElement().SetZero()) && res.Y.Equal(ff.NewElement().SetOne())
|
||||||
}
|
}
|
||||||
|
|
||||||
// PointCoordSign returns the sign of the curve point coordinate. It returns
|
// PointCoordSign returns the sign of the curve point coordinate. It returns
|
||||||
@@ -171,8 +192,9 @@ func PackPoint(ay *big.Int, sign bool) [32]byte {
|
|||||||
// Compress the point into a 32 byte array that contains the y coordinate in
|
// Compress the point into a 32 byte array that contains the y coordinate in
|
||||||
// little endian and the sign of the x coordinate.
|
// little endian and the sign of the x coordinate.
|
||||||
func (p *Point) Compress() [32]byte {
|
func (p *Point) Compress() [32]byte {
|
||||||
sign := PointCoordSign(p.X)
|
pBI := PointToPointBI(p)
|
||||||
return PackPoint(p.Y, sign)
|
sign := PointCoordSign(pBI.X)
|
||||||
|
return PackPoint(pBI.Y, sign)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Decompress a compressed Point into p, and also returns the decompressed
|
// Decompress a compressed Point into p, and also returns the decompressed
|
||||||
@@ -183,34 +205,37 @@ func (p *Point) Decompress(leBuf [32]byte) (*Point, error) {
|
|||||||
sign = true
|
sign = true
|
||||||
leBuf[31] = leBuf[31] & 0x7F
|
leBuf[31] = leBuf[31] & 0x7F
|
||||||
}
|
}
|
||||||
utils.SetBigIntFromLEBytes(p.Y, leBuf[:])
|
y := big.NewInt(0)
|
||||||
if p.Y.Cmp(constants.Q) >= 0 {
|
utils.SetBigIntFromLEBytes(y, leBuf[:])
|
||||||
|
if y.Cmp(constants.Q) >= 0 {
|
||||||
return nil, fmt.Errorf("p.y >= Q")
|
return nil, fmt.Errorf("p.y >= Q")
|
||||||
}
|
}
|
||||||
|
p.Y = ff.NewElement().SetBigInt(y)
|
||||||
|
|
||||||
y2 := new(big.Int).Mul(p.Y, p.Y)
|
y2 := ff.NewElement().Mul(p.Y, p.Y)
|
||||||
y2.Mod(y2, constants.Q)
|
xa := ff.NewElement().SetOne()
|
||||||
xa := big.NewInt(1)
|
|
||||||
xa.Sub(xa, y2) // xa == 1 - y^2
|
xa.Sub(xa, y2) // xa == 1 - y^2
|
||||||
|
|
||||||
xb := new(big.Int).Mul(D, y2)
|
xb := ff.NewElement().Mul(D, y2)
|
||||||
xb.Mod(xb, constants.Q)
|
|
||||||
xb.Sub(A, xb) // xb = A - d * y^2
|
xb.Sub(A, xb) // xb = A - d * y^2
|
||||||
|
|
||||||
if xb.Cmp(big.NewInt(0)) == 0 {
|
if xb.Equal(ff.NewElement().SetZero()) {
|
||||||
return nil, fmt.Errorf("division by 0")
|
return nil, fmt.Errorf("division by 0")
|
||||||
}
|
}
|
||||||
xb.ModInverse(xb, constants.Q)
|
xb.Inverse(xb)
|
||||||
p.X.Mul(xa, xb) // xa / xb
|
p.X.Mul(xa, xb) // xa / xb
|
||||||
p.X.Mod(p.X, constants.Q)
|
|
||||||
noSqrt := p.X.ModSqrt(p.X, constants.Q)
|
q := PointToPointBI(p)
|
||||||
|
noSqrt := q.X.ModSqrt(q.X, constants.Q)
|
||||||
if noSqrt == nil {
|
if noSqrt == nil {
|
||||||
return nil, fmt.Errorf("x is not a square mod q")
|
return nil, fmt.Errorf("x is not a square mod q")
|
||||||
}
|
}
|
||||||
if (sign && !PointCoordSign(p.X)) || (!sign && PointCoordSign(p.X)) {
|
if (sign && !PointCoordSign(q.X)) || (!sign && PointCoordSign(q.X)) {
|
||||||
p.X.Mul(p.X, constants.MinusOne)
|
q.X.Mul(q.X, constants.MinusOne)
|
||||||
}
|
}
|
||||||
p.X.Mod(p.X, constants.Q)
|
q.X.Mod(q.X, constants.Q)
|
||||||
|
|
||||||
|
p = PointBIToPoint(q)
|
||||||
|
|
||||||
return p, nil
|
return p, nil
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -7,13 +7,21 @@ import (
|
|||||||
"testing"
|
"testing"
|
||||||
|
|
||||||
"github.com/iden3/go-iden3-crypto/constants"
|
"github.com/iden3/go-iden3-crypto/constants"
|
||||||
|
"github.com/iden3/go-iden3-crypto/ff"
|
||||||
"github.com/iden3/go-iden3-crypto/utils"
|
"github.com/iden3/go-iden3-crypto/utils"
|
||||||
"github.com/stretchr/testify/assert"
|
"github.com/stretchr/testify/assert"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
func zero() *ff.Element {
|
||||||
|
return ff.NewElement().SetZero()
|
||||||
|
}
|
||||||
|
func one() *ff.Element {
|
||||||
|
return ff.NewElement().SetOne()
|
||||||
|
}
|
||||||
|
|
||||||
func TestAdd1(t *testing.T) {
|
func TestAdd1(t *testing.T) {
|
||||||
a := &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
a := &Point{X: zero(), Y: one()}
|
||||||
b := &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
b := &Point{X: zero(), Y: one()}
|
||||||
|
|
||||||
c := NewPoint().Add(a, b)
|
c := NewPoint().Add(a, b)
|
||||||
// fmt.Printf("%v = 2 * %v", *c, *a)
|
// fmt.Printf("%v = 2 * %v", *c, *a)
|
||||||
@@ -22,15 +30,15 @@ func TestAdd1(t *testing.T) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func TestAdd2(t *testing.T) {
|
func TestAdd2(t *testing.T) {
|
||||||
aX := utils.NewIntFromString(
|
aX := ff.NewElement().SetString(
|
||||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||||
aY := utils.NewIntFromString(
|
aY := ff.NewElement().SetString(
|
||||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||||
a := &Point{X: aX, Y: aY}
|
a := &Point{X: aX, Y: aY}
|
||||||
|
|
||||||
bX := utils.NewIntFromString(
|
bX := ff.NewElement().SetString(
|
||||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||||
bY := utils.NewIntFromString(
|
bY := ff.NewElement().SetString(
|
||||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||||
b := &Point{X: bX, Y: bY}
|
b := &Point{X: bX, Y: bY}
|
||||||
|
|
||||||
@@ -45,15 +53,15 @@ func TestAdd2(t *testing.T) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func TestAdd3(t *testing.T) {
|
func TestAdd3(t *testing.T) {
|
||||||
aX := utils.NewIntFromString(
|
aX := ff.NewElement().SetString(
|
||||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||||
aY := utils.NewIntFromString(
|
aY := ff.NewElement().SetString(
|
||||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||||
a := &Point{X: aX, Y: aY}
|
a := &Point{X: aX, Y: aY}
|
||||||
|
|
||||||
bX := utils.NewIntFromString(
|
bX := ff.NewElement().SetString(
|
||||||
"16540640123574156134436876038791482806971768689494387082833631921987005038935")
|
"16540640123574156134436876038791482806971768689494387082833631921987005038935")
|
||||||
bY := utils.NewIntFromString(
|
bY := ff.NewElement().SetString(
|
||||||
"20819045374670962167435360035096875258406992893633759881276124905556507972311")
|
"20819045374670962167435360035096875258406992893633759881276124905556507972311")
|
||||||
b := &Point{X: bX, Y: bY}
|
b := &Point{X: bX, Y: bY}
|
||||||
|
|
||||||
@@ -68,15 +76,15 @@ func TestAdd3(t *testing.T) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func TestAdd4(t *testing.T) {
|
func TestAdd4(t *testing.T) {
|
||||||
aX := utils.NewIntFromString(
|
aX := ff.NewElement().SetString(
|
||||||
"0")
|
"0")
|
||||||
aY := utils.NewIntFromString(
|
aY := ff.NewElement().SetString(
|
||||||
"1")
|
"1")
|
||||||
a := &Point{X: aX, Y: aY}
|
a := &Point{X: aX, Y: aY}
|
||||||
|
|
||||||
bX := utils.NewIntFromString(
|
bX := ff.NewElement().SetString(
|
||||||
"16540640123574156134436876038791482806971768689494387082833631921987005038935")
|
"16540640123574156134436876038791482806971768689494387082833631921987005038935")
|
||||||
bY := utils.NewIntFromString(
|
bY := ff.NewElement().SetString(
|
||||||
"20819045374670962167435360035096875258406992893633759881276124905556507972311")
|
"20819045374670962167435360035096875258406992893633759881276124905556507972311")
|
||||||
b := &Point{X: bX, Y: bY}
|
b := &Point{X: bX, Y: bY}
|
||||||
|
|
||||||
@@ -91,19 +99,19 @@ func TestAdd4(t *testing.T) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func TestInCurve1(t *testing.T) {
|
func TestInCurve1(t *testing.T) {
|
||||||
p := &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
p := &Point{X: zero(), Y: one()}
|
||||||
assert.Equal(t, true, p.InCurve())
|
assert.Equal(t, true, p.InCurve())
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestInCurve2(t *testing.T) {
|
func TestInCurve2(t *testing.T) {
|
||||||
p := &Point{X: big.NewInt(1), Y: big.NewInt(0)}
|
p := &Point{X: one(), Y: zero()}
|
||||||
assert.Equal(t, false, p.InCurve())
|
assert.Equal(t, false, p.InCurve())
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestMul0(t *testing.T) {
|
func TestMul0(t *testing.T) {
|
||||||
x := utils.NewIntFromString(
|
x := ff.NewElement().SetString(
|
||||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||||
y := utils.NewIntFromString(
|
y := ff.NewElement().SetString(
|
||||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||||
p := &Point{X: x, Y: y}
|
p := &Point{X: x, Y: y}
|
||||||
s := utils.NewIntFromString("3")
|
s := utils.NewIntFromString("3")
|
||||||
@@ -123,9 +131,9 @@ func TestMul0(t *testing.T) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func TestMul1(t *testing.T) {
|
func TestMul1(t *testing.T) {
|
||||||
x := utils.NewIntFromString(
|
x := ff.NewElement().SetString(
|
||||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||||
y := utils.NewIntFromString(
|
y := ff.NewElement().SetString(
|
||||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||||
p := &Point{X: x, Y: y}
|
p := &Point{X: x, Y: y}
|
||||||
s := utils.NewIntFromString(
|
s := utils.NewIntFromString(
|
||||||
@@ -140,9 +148,9 @@ func TestMul1(t *testing.T) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func TestMul2(t *testing.T) {
|
func TestMul2(t *testing.T) {
|
||||||
x := utils.NewIntFromString(
|
x := ff.NewElement().SetString(
|
||||||
"6890855772600357754907169075114257697580319025794532037257385534741338397365")
|
"6890855772600357754907169075114257697580319025794532037257385534741338397365")
|
||||||
y := utils.NewIntFromString(
|
y := ff.NewElement().SetString(
|
||||||
"4338620300185947561074059802482547481416142213883829469920100239455078257889")
|
"4338620300185947561074059802482547481416142213883829469920100239455078257889")
|
||||||
p := &Point{X: x, Y: y}
|
p := &Point{X: x, Y: y}
|
||||||
s := utils.NewIntFromString(
|
s := utils.NewIntFromString(
|
||||||
@@ -157,45 +165,45 @@ func TestMul2(t *testing.T) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func TestInCurve3(t *testing.T) {
|
func TestInCurve3(t *testing.T) {
|
||||||
x := utils.NewIntFromString(
|
x := ff.NewElement().SetString(
|
||||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||||
y := utils.NewIntFromString(
|
y := ff.NewElement().SetString(
|
||||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||||
p := &Point{X: x, Y: y}
|
p := &Point{X: x, Y: y}
|
||||||
assert.Equal(t, true, p.InCurve())
|
assert.Equal(t, true, p.InCurve())
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestInCurve4(t *testing.T) {
|
func TestInCurve4(t *testing.T) {
|
||||||
x := utils.NewIntFromString(
|
x := ff.NewElement().SetString(
|
||||||
"6890855772600357754907169075114257697580319025794532037257385534741338397365")
|
"6890855772600357754907169075114257697580319025794532037257385534741338397365")
|
||||||
y := utils.NewIntFromString(
|
y := ff.NewElement().SetString(
|
||||||
"4338620300185947561074059802482547481416142213883829469920100239455078257889")
|
"4338620300185947561074059802482547481416142213883829469920100239455078257889")
|
||||||
p := &Point{X: x, Y: y}
|
p := &Point{X: x, Y: y}
|
||||||
assert.Equal(t, true, p.InCurve())
|
assert.Equal(t, true, p.InCurve())
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestInSubGroup1(t *testing.T) {
|
func TestInSubGroup1(t *testing.T) {
|
||||||
x := utils.NewIntFromString(
|
x := ff.NewElement().SetString(
|
||||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||||
y := utils.NewIntFromString(
|
y := ff.NewElement().SetString(
|
||||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||||
p := &Point{X: x, Y: y}
|
p := &Point{X: x, Y: y}
|
||||||
assert.Equal(t, true, p.InSubGroup())
|
assert.Equal(t, true, p.InSubGroup())
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestInSubGroup2(t *testing.T) {
|
func TestInSubGroup2(t *testing.T) {
|
||||||
x := utils.NewIntFromString(
|
x := ff.NewElement().SetString(
|
||||||
"6890855772600357754907169075114257697580319025794532037257385534741338397365")
|
"6890855772600357754907169075114257697580319025794532037257385534741338397365")
|
||||||
y := utils.NewIntFromString(
|
y := ff.NewElement().SetString(
|
||||||
"4338620300185947561074059802482547481416142213883829469920100239455078257889")
|
"4338620300185947561074059802482547481416142213883829469920100239455078257889")
|
||||||
p := &Point{X: x, Y: y}
|
p := &Point{X: x, Y: y}
|
||||||
assert.Equal(t, true, p.InSubGroup())
|
assert.Equal(t, true, p.InSubGroup())
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestCompressDecompress1(t *testing.T) {
|
func TestCompressDecompress1(t *testing.T) {
|
||||||
x := utils.NewIntFromString(
|
x := ff.NewElement().SetString(
|
||||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||||
y := utils.NewIntFromString(
|
y := ff.NewElement().SetString(
|
||||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||||
p := &Point{X: x, Y: y}
|
p := &Point{X: x, Y: y}
|
||||||
|
|
||||||
@@ -209,9 +217,9 @@ func TestCompressDecompress1(t *testing.T) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
func TestCompressDecompress2(t *testing.T) {
|
func TestCompressDecompress2(t *testing.T) {
|
||||||
x := utils.NewIntFromString(
|
x := ff.NewElement().SetString(
|
||||||
"6890855772600357754907169075114257697580319025794532037257385534741338397365")
|
"6890855772600357754907169075114257697580319025794532037257385534741338397365")
|
||||||
y := utils.NewIntFromString(
|
y := ff.NewElement().SetString(
|
||||||
"4338620300185947561074059802482547481416142213883829469920100239455078257889")
|
"4338620300185947561074059802482547481416142213883829469920100239455078257889")
|
||||||
p := &Point{X: x, Y: y}
|
p := &Point{X: x, Y: y}
|
||||||
|
|
||||||
@@ -230,7 +238,8 @@ func TestCompressDecompressRnd(t *testing.T) {
|
|||||||
buf := p1.Compress()
|
buf := p1.Compress()
|
||||||
p2, err := NewPoint().Decompress(buf)
|
p2, err := NewPoint().Decompress(buf)
|
||||||
assert.Equal(t, nil, err)
|
assert.Equal(t, nil, err)
|
||||||
assert.Equal(t, p1, p2)
|
// assert.Equal(t, p1, p2)
|
||||||
|
assert.True(t, p1.Equal(p2))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -241,15 +250,15 @@ func BenchmarkBabyjub(b *testing.B) {
|
|||||||
|
|
||||||
var badpoints [n]*Point
|
var badpoints [n]*Point
|
||||||
for i := 0; i < n; i++ {
|
for i := 0; i < n; i++ {
|
||||||
x := new(big.Int).Rand(rnd, constants.Q)
|
x := ff.NewElement().SetRandom()
|
||||||
y := new(big.Int).Rand(rnd, constants.Q)
|
y := ff.NewElement().SetRandom()
|
||||||
badpoints[i] = &Point{X: x, Y: y}
|
badpoints[i] = &Point{X: x, Y: y}
|
||||||
}
|
}
|
||||||
|
|
||||||
var points [n]*Point
|
var points [n]*Point
|
||||||
baseX := utils.NewIntFromString(
|
baseX := ff.NewElement().SetString(
|
||||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||||
baseY := utils.NewIntFromString(
|
baseY := ff.NewElement().SetString(
|
||||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||||
base := &Point{X: baseX, Y: baseY}
|
base := &Point{X: baseX, Y: baseY}
|
||||||
for i := 0; i < n; i++ {
|
for i := 0; i < n; i++ {
|
||||||
@@ -263,8 +272,8 @@ func BenchmarkBabyjub(b *testing.B) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
b.Run("AddConst", func(b *testing.B) {
|
b.Run("AddConst", func(b *testing.B) {
|
||||||
p0 := &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
p0 := &Point{X: zero(), Y: one()}
|
||||||
p1 := &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
p1 := &Point{X: zero(), Y: one()}
|
||||||
|
|
||||||
p2 := NewPoint()
|
p2 := NewPoint()
|
||||||
for i := 0; i < b.N; i++ {
|
for i := 0; i < b.N; i++ {
|
||||||
|
|||||||
@@ -180,7 +180,7 @@ func (k *PrivateKey) SignMimc7(msg *big.Int) *Signature {
|
|||||||
r.Mod(r, SubOrder)
|
r.Mod(r, SubOrder)
|
||||||
R8 := NewPoint().Mul(r, B8) // R8 = r * 8 * B
|
R8 := NewPoint().Mul(r, B8) // R8 = r * 8 * B
|
||||||
A := k.Public().Point()
|
A := k.Public().Point()
|
||||||
hmInput := []*big.Int{R8.X, R8.Y, A.X, A.Y, msg}
|
hmInput := []*big.Int{R8.X.BigInt(), R8.Y.BigInt(), A.X.BigInt(), A.Y.BigInt(), msg}
|
||||||
hm, err := mimc7.Hash(hmInput, nil) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
hm, err := mimc7.Hash(hmInput, nil) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
panic(err)
|
panic(err)
|
||||||
@@ -196,7 +196,7 @@ func (k *PrivateKey) SignMimc7(msg *big.Int) *Signature {
|
|||||||
// VerifyMimc7 verifies the signature of a message encoded as a big.Int in Zq
|
// VerifyMimc7 verifies the signature of a message encoded as a big.Int in Zq
|
||||||
// using blake-512 hash for buffer hashing and mimc7 for big.Int hashing.
|
// using blake-512 hash for buffer hashing and mimc7 for big.Int hashing.
|
||||||
func (p *PublicKey) VerifyMimc7(msg *big.Int, sig *Signature) bool {
|
func (p *PublicKey) VerifyMimc7(msg *big.Int, sig *Signature) bool {
|
||||||
hmInput := []*big.Int{sig.R8.X, sig.R8.Y, p.X, p.Y, msg}
|
hmInput := []*big.Int{sig.R8.X.BigInt(), sig.R8.Y.BigInt(), p.X.BigInt(), p.Y.BigInt(), msg}
|
||||||
hm, err := mimc7.Hash(hmInput, nil) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
hm, err := mimc7.Hash(hmInput, nil) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
panic(err)
|
panic(err)
|
||||||
@@ -207,7 +207,7 @@ func (p *PublicKey) VerifyMimc7(msg *big.Int, sig *Signature) bool {
|
|||||||
r1.Mul(r1, hm)
|
r1.Mul(r1, hm)
|
||||||
right := NewPoint().Mul(r1, p.Point())
|
right := NewPoint().Mul(r1, p.Point())
|
||||||
right.Add(sig.R8, right) // right = 8 * R + 8 * hm * A
|
right.Add(sig.R8, right) // right = 8 * R + 8 * hm * A
|
||||||
return (left.X.Cmp(right.X) == 0) && (left.Y.Cmp(right.Y) == 0)
|
return left.X.Equal(right.X) && left.Y.Equal(right.Y)
|
||||||
}
|
}
|
||||||
|
|
||||||
// SignPoseidon signs a message encoded as a big.Int in Zq using blake-512 hash
|
// SignPoseidon signs a message encoded as a big.Int in Zq using blake-512 hash
|
||||||
@@ -223,7 +223,7 @@ func (k *PrivateKey) SignPoseidon(msg *big.Int) *Signature {
|
|||||||
R8 := NewPoint().Mul(r, B8) // R8 = r * 8 * B
|
R8 := NewPoint().Mul(r, B8) // R8 = r * 8 * B
|
||||||
A := k.Public().Point()
|
A := k.Public().Point()
|
||||||
|
|
||||||
hmInput := [poseidon.T]*big.Int{R8.X, R8.Y, A.X, A.Y, msg, big.NewInt(int64(0))}
|
hmInput := [poseidon.T]*big.Int{R8.X.BigInt(), R8.Y.BigInt(), A.X.BigInt(), A.Y.BigInt(), msg, big.NewInt(int64(0))}
|
||||||
hm, err := poseidon.PoseidonHash(hmInput) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
hm, err := poseidon.PoseidonHash(hmInput) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
panic(err)
|
panic(err)
|
||||||
@@ -240,7 +240,7 @@ func (k *PrivateKey) SignPoseidon(msg *big.Int) *Signature {
|
|||||||
// VerifyPoseidon verifies the signature of a message encoded as a big.Int in Zq
|
// VerifyPoseidon verifies the signature of a message encoded as a big.Int in Zq
|
||||||
// using blake-512 hash for buffer hashing and Poseidon for big.Int hashing.
|
// using blake-512 hash for buffer hashing and Poseidon for big.Int hashing.
|
||||||
func (p *PublicKey) VerifyPoseidon(msg *big.Int, sig *Signature) bool {
|
func (p *PublicKey) VerifyPoseidon(msg *big.Int, sig *Signature) bool {
|
||||||
hmInput := [poseidon.T]*big.Int{sig.R8.X, sig.R8.Y, p.X, p.Y, msg, big.NewInt(int64(0))}
|
hmInput := [poseidon.T]*big.Int{sig.R8.X.BigInt(), sig.R8.Y.BigInt(), p.X.BigInt(), p.Y.BigInt(), msg, big.NewInt(int64(0))}
|
||||||
hm, err := poseidon.PoseidonHash(hmInput) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
hm, err := poseidon.PoseidonHash(hmInput) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
panic(err)
|
panic(err)
|
||||||
@@ -251,5 +251,5 @@ func (p *PublicKey) VerifyPoseidon(msg *big.Int, sig *Signature) bool {
|
|||||||
r1.Mul(r1, hm)
|
r1.Mul(r1, hm)
|
||||||
right := NewPoint().Mul(r1, p.Point())
|
right := NewPoint().Mul(r1, p.Point())
|
||||||
right.Add(sig.R8, right) // right = 8 * R + 8 * hm * A
|
right.Add(sig.R8, right) // right = 8 * R + 8 * hm * A
|
||||||
return (left.X.Cmp(right.X) == 0) && (left.Y.Cmp(right.Y) == 0)
|
return left.X.Equal(right.X) && left.Y.Equal(right.Y)
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -31,8 +31,8 @@ func TestPublicKey(t *testing.T) {
|
|||||||
hex.Decode(k[:], []byte{byte(i)})
|
hex.Decode(k[:], []byte{byte(i)})
|
||||||
}
|
}
|
||||||
pk := k.Public()
|
pk := k.Public()
|
||||||
assert.True(t, pk.X.Cmp(constants.Q) == -1)
|
assert.True(t, pk.X.BigInt().Cmp(constants.Q) == -1)
|
||||||
assert.True(t, pk.Y.Cmp(constants.Q) == -1)
|
assert.True(t, pk.Y.BigInt().Cmp(constants.Q) == -1)
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestSignVerifyMimc7(t *testing.T) {
|
func TestSignVerifyMimc7(t *testing.T) {
|
||||||
|
|||||||
@@ -12,19 +12,14 @@
|
|||||||
// See the License for the specific language governing permissions and
|
// See the License for the specific language governing permissions and
|
||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
// Code generated by goff (v0.2.0) DO NOT EDIT
|
// Code generated by goff DO NOT EDIT
|
||||||
|
|
||||||
// Package ff contains field arithmetic operations
|
|
||||||
package ff
|
package ff
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"math/bits"
|
"math/bits"
|
||||||
|
|
||||||
"golang.org/x/sys/cpu"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
var supportAdx = cpu.X86.HasADX && cpu.X86.HasBMI2
|
|
||||||
|
|
||||||
func madd(a, b, t, u, v uint64) (uint64, uint64, uint64) {
|
func madd(a, b, t, u, v uint64) (uint64, uint64, uint64) {
|
||||||
var carry uint64
|
var carry uint64
|
||||||
hi, lo := bits.Mul64(a, b)
|
hi, lo := bits.Mul64(a, b)
|
||||||
|
|||||||
386
ff/element.go
386
ff/element.go
@@ -12,33 +12,29 @@
|
|||||||
// See the License for the specific language governing permissions and
|
// See the License for the specific language governing permissions and
|
||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
// Code generated by goff (v0.2.0) DO NOT EDIT
|
// field modulus q =
|
||||||
|
//
|
||||||
|
// 21888242871839275222246405745257275088548364400416034343698204186575808495617
|
||||||
|
// Code generated by goff DO NOT EDIT
|
||||||
|
// goff version: - build:
|
||||||
|
// Element are assumed to be in Montgomery form in all methods
|
||||||
|
|
||||||
// Package ff contains field arithmetic operations
|
// Package ff (generated by goff) contains field arithmetics operations
|
||||||
package ff
|
package ff
|
||||||
|
|
||||||
// /!\ WARNING /!\
|
|
||||||
// this code has not been audited and is provided as-is. In particular,
|
|
||||||
// there is no security guarantees such as constant time implementation
|
|
||||||
// or side-channel attack resistance
|
|
||||||
// /!\ WARNING /!\
|
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"crypto/rand"
|
"crypto/rand"
|
||||||
"encoding/binary"
|
"encoding/binary"
|
||||||
"io"
|
"io"
|
||||||
"math/big"
|
"math/big"
|
||||||
"math/bits"
|
"math/bits"
|
||||||
"strconv"
|
|
||||||
"sync"
|
"sync"
|
||||||
|
|
||||||
"unsafe"
|
"unsafe"
|
||||||
)
|
)
|
||||||
|
|
||||||
// Element represents a field element stored on 4 words (uint64)
|
// Element represents a field element stored on 4 words (uint64)
|
||||||
// Element are assumed to be in Montgomery form in all methods
|
// Element are assumed to be in Montgomery form in all methods
|
||||||
// field modulus q =
|
|
||||||
//
|
|
||||||
// 21888242871839275222246405745257275088548364400416034343698204186575808495617
|
|
||||||
type Element [4]uint64
|
type Element [4]uint64
|
||||||
|
|
||||||
// ElementLimbs number of 64 bits words needed to represent Element
|
// ElementLimbs number of 64 bits words needed to represent Element
|
||||||
@@ -315,7 +311,6 @@ func (z *Element) SetRandom() *Element {
|
|||||||
z[3] %= 3486998266802970665
|
z[3] %= 3486998266802970665
|
||||||
|
|
||||||
// if z > q --> z -= q
|
// if z > q --> z -= q
|
||||||
// note: this is NOT constant time
|
|
||||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||||
var b uint64
|
var b uint64
|
||||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||||
@@ -327,38 +322,6 @@ func (z *Element) SetRandom() *Element {
|
|||||||
return z
|
return z
|
||||||
}
|
}
|
||||||
|
|
||||||
// One returns 1 (in montgommery form)
|
|
||||||
func One() Element {
|
|
||||||
var one Element
|
|
||||||
one.SetOne()
|
|
||||||
return one
|
|
||||||
}
|
|
||||||
|
|
||||||
// FromInterface converts i1 from uint64, int, string, or Element, big.Int into Element
|
|
||||||
// panic if provided type is not supported
|
|
||||||
func FromInterface(i1 interface{}) Element {
|
|
||||||
var val Element
|
|
||||||
|
|
||||||
switch c1 := i1.(type) {
|
|
||||||
case uint64:
|
|
||||||
val.SetUint64(c1)
|
|
||||||
case int:
|
|
||||||
val.SetString(strconv.Itoa(c1))
|
|
||||||
case string:
|
|
||||||
val.SetString(c1)
|
|
||||||
case big.Int:
|
|
||||||
val.SetBigInt(&c1)
|
|
||||||
case Element:
|
|
||||||
val = c1
|
|
||||||
case *Element:
|
|
||||||
val.Set(c1)
|
|
||||||
default:
|
|
||||||
panic("invalid type")
|
|
||||||
}
|
|
||||||
|
|
||||||
return val
|
|
||||||
}
|
|
||||||
|
|
||||||
// Add z = x + y mod q
|
// Add z = x + y mod q
|
||||||
func (z *Element) Add(x, y *Element) *Element {
|
func (z *Element) Add(x, y *Element) *Element {
|
||||||
var carry uint64
|
var carry uint64
|
||||||
@@ -369,7 +332,6 @@ func (z *Element) Add(x, y *Element) *Element {
|
|||||||
z[3], _ = bits.Add64(x[3], y[3], carry)
|
z[3], _ = bits.Add64(x[3], y[3], carry)
|
||||||
|
|
||||||
// if z > q --> z -= q
|
// if z > q --> z -= q
|
||||||
// note: this is NOT constant time
|
|
||||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||||
var b uint64
|
var b uint64
|
||||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||||
@@ -390,7 +352,6 @@ func (z *Element) AddAssign(x *Element) *Element {
|
|||||||
z[3], _ = bits.Add64(z[3], x[3], carry)
|
z[3], _ = bits.Add64(z[3], x[3], carry)
|
||||||
|
|
||||||
// if z > q --> z -= q
|
// if z > q --> z -= q
|
||||||
// note: this is NOT constant time
|
|
||||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||||
var b uint64
|
var b uint64
|
||||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||||
@@ -411,7 +372,6 @@ func (z *Element) Double(x *Element) *Element {
|
|||||||
z[3], _ = bits.Add64(x[3], x[3], carry)
|
z[3], _ = bits.Add64(x[3], x[3], carry)
|
||||||
|
|
||||||
// if z > q --> z -= q
|
// if z > q --> z -= q
|
||||||
// note: this is NOT constant time
|
|
||||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||||
var b uint64
|
var b uint64
|
||||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||||
@@ -456,31 +416,18 @@ func (z *Element) SubAssign(x *Element) *Element {
|
|||||||
return z
|
return z
|
||||||
}
|
}
|
||||||
|
|
||||||
// Exp z = x^exponent mod q
|
// Exp z = x^e mod q
|
||||||
// (not optimized)
|
func (z *Element) Exp(x Element, e uint64) *Element {
|
||||||
// exponent (non-montgomery form) is ordered from least significant word to most significant word
|
if e == 0 {
|
||||||
func (z *Element) Exp(x Element, exponent ...uint64) *Element {
|
|
||||||
r := 0
|
|
||||||
msb := 0
|
|
||||||
for i := len(exponent) - 1; i >= 0; i-- {
|
|
||||||
if exponent[i] == 0 {
|
|
||||||
r++
|
|
||||||
} else {
|
|
||||||
msb = (i * 64) + bits.Len64(exponent[i])
|
|
||||||
break
|
|
||||||
}
|
|
||||||
}
|
|
||||||
exponent = exponent[:len(exponent)-r]
|
|
||||||
if len(exponent) == 0 {
|
|
||||||
return z.SetOne()
|
return z.SetOne()
|
||||||
}
|
}
|
||||||
|
|
||||||
z.Set(&x)
|
z.Set(&x)
|
||||||
|
|
||||||
l := msb - 2
|
l := bits.Len64(e) - 2
|
||||||
for i := l; i >= 0; i-- {
|
for i := l; i >= 0; i-- {
|
||||||
z.Square(z)
|
z.Square(z)
|
||||||
if exponent[i/64]&(1<<uint(i%64)) != 0 {
|
if e&(1<<uint(i)) != 0 {
|
||||||
z.MulAssign(&x)
|
z.MulAssign(&x)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -531,7 +478,6 @@ func (z *Element) FromMont() *Element {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// if z > q --> z -= q
|
// if z > q --> z -= q
|
||||||
// note: this is NOT constant time
|
|
||||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||||
var b uint64
|
var b uint64
|
||||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||||
@@ -567,33 +513,15 @@ func (z *Element) String() string {
|
|||||||
|
|
||||||
// ToBigInt returns z as a big.Int in Montgomery form
|
// ToBigInt returns z as a big.Int in Montgomery form
|
||||||
func (z *Element) ToBigInt(res *big.Int) *big.Int {
|
func (z *Element) ToBigInt(res *big.Int) *big.Int {
|
||||||
if bits.UintSize == 64 {
|
|
||||||
bits := (*[4]big.Word)(unsafe.Pointer(z))
|
bits := (*[4]big.Word)(unsafe.Pointer(z))
|
||||||
return res.SetBits(bits[:])
|
return res.SetBits(bits[:])
|
||||||
} else {
|
|
||||||
var bits [8]big.Word
|
|
||||||
for i := 0; i < len(z); i++ {
|
|
||||||
bits[i*2] = big.Word(z[i])
|
|
||||||
bits[i*2+1] = big.Word(z[i] >> 32)
|
|
||||||
}
|
|
||||||
return res.SetBits(bits[:])
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// ToBigIntRegular returns z as a big.Int in regular form
|
// ToBigIntRegular returns z as a big.Int in regular form
|
||||||
func (z Element) ToBigIntRegular(res *big.Int) *big.Int {
|
func (z Element) ToBigIntRegular(res *big.Int) *big.Int {
|
||||||
z.FromMont()
|
z.FromMont()
|
||||||
if bits.UintSize == 64 {
|
|
||||||
bits := (*[4]big.Word)(unsafe.Pointer(&z))
|
bits := (*[4]big.Word)(unsafe.Pointer(&z))
|
||||||
return res.SetBits(bits[:])
|
return res.SetBits(bits[:])
|
||||||
} else {
|
|
||||||
var bits [8]big.Word
|
|
||||||
for i := 0; i < len(z); i++ {
|
|
||||||
bits[i*2] = big.Word(z[i])
|
|
||||||
bits[i*2+1] = big.Word(z[i] >> 32)
|
|
||||||
}
|
|
||||||
return res.SetBits(bits[:])
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// SetBigInt sets z to v (regular form) and returns z in Montgomery form
|
// SetBigInt sets z to v (regular form) and returns z in Montgomery form
|
||||||
@@ -603,19 +531,6 @@ func (z *Element) SetBigInt(v *big.Int) *Element {
|
|||||||
zero := big.NewInt(0)
|
zero := big.NewInt(0)
|
||||||
q := elementModulusBigInt()
|
q := elementModulusBigInt()
|
||||||
|
|
||||||
// fast path
|
|
||||||
c := v.Cmp(q)
|
|
||||||
if c == 0 {
|
|
||||||
return z
|
|
||||||
} else if c != 1 && v.Cmp(zero) != -1 {
|
|
||||||
// v should
|
|
||||||
vBits := v.Bits()
|
|
||||||
for i := 0; i < len(vBits); i++ {
|
|
||||||
z[i] = uint64(vBits[i])
|
|
||||||
}
|
|
||||||
return z.ToMont()
|
|
||||||
}
|
|
||||||
|
|
||||||
// copy input
|
// copy input
|
||||||
vv := new(big.Int).Set(v)
|
vv := new(big.Int).Set(v)
|
||||||
|
|
||||||
@@ -633,19 +548,9 @@ func (z *Element) SetBigInt(v *big.Int) *Element {
|
|||||||
}
|
}
|
||||||
// v should
|
// v should
|
||||||
vBits := vv.Bits()
|
vBits := vv.Bits()
|
||||||
if bits.UintSize == 64 {
|
|
||||||
for i := 0; i < len(vBits); i++ {
|
for i := 0; i < len(vBits); i++ {
|
||||||
z[i] = uint64(vBits[i])
|
z[i] = uint64(vBits[i])
|
||||||
}
|
}
|
||||||
} else {
|
|
||||||
for i := 0; i < len(vBits); i++ {
|
|
||||||
if i%2 == 0 {
|
|
||||||
z[i/2] = uint64(vBits[i])
|
|
||||||
} else {
|
|
||||||
z[i/2] |= uint64(vBits[i]) << 32
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return z.ToMont()
|
return z.ToMont()
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -658,97 +563,202 @@ func (z *Element) SetString(s string) *Element {
|
|||||||
return z.SetBigInt(x)
|
return z.SetBigInt(x)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Legendre returns the Legendre symbol of z (either +1, -1, or 0.)
|
// Mul z = x * y mod q
|
||||||
func (z *Element) Legendre() int {
|
func (z *Element) Mul(x, y *Element) *Element {
|
||||||
var l Element
|
|
||||||
// z^((q-1)/2)
|
|
||||||
l.Exp(*z,
|
|
||||||
11669102379873075200,
|
|
||||||
10671829228508198984,
|
|
||||||
15863968012492123182,
|
|
||||||
1743499133401485332,
|
|
||||||
)
|
|
||||||
|
|
||||||
if l.IsZero() {
|
var t [4]uint64
|
||||||
return 0
|
var c [3]uint64
|
||||||
|
{
|
||||||
|
// round 0
|
||||||
|
v := x[0]
|
||||||
|
c[1], c[0] = bits.Mul64(v, y[0])
|
||||||
|
m := c[0] * 14042775128853446655
|
||||||
|
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||||
|
c[1], c[0] = madd1(v, y[1], c[1])
|
||||||
|
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||||
|
c[1], c[0] = madd1(v, y[2], c[1])
|
||||||
|
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||||
|
c[1], c[0] = madd1(v, y[3], c[1])
|
||||||
|
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||||
|
}
|
||||||
|
{
|
||||||
|
// round 1
|
||||||
|
v := x[1]
|
||||||
|
c[1], c[0] = madd1(v, y[0], t[0])
|
||||||
|
m := c[0] * 14042775128853446655
|
||||||
|
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||||
|
c[1], c[0] = madd2(v, y[1], c[1], t[1])
|
||||||
|
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||||
|
c[1], c[0] = madd2(v, y[2], c[1], t[2])
|
||||||
|
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||||
|
c[1], c[0] = madd2(v, y[3], c[1], t[3])
|
||||||
|
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||||
|
}
|
||||||
|
{
|
||||||
|
// round 2
|
||||||
|
v := x[2]
|
||||||
|
c[1], c[0] = madd1(v, y[0], t[0])
|
||||||
|
m := c[0] * 14042775128853446655
|
||||||
|
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||||
|
c[1], c[0] = madd2(v, y[1], c[1], t[1])
|
||||||
|
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||||
|
c[1], c[0] = madd2(v, y[2], c[1], t[2])
|
||||||
|
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||||
|
c[1], c[0] = madd2(v, y[3], c[1], t[3])
|
||||||
|
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||||
|
}
|
||||||
|
{
|
||||||
|
// round 3
|
||||||
|
v := x[3]
|
||||||
|
c[1], c[0] = madd1(v, y[0], t[0])
|
||||||
|
m := c[0] * 14042775128853446655
|
||||||
|
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||||
|
c[1], c[0] = madd2(v, y[1], c[1], t[1])
|
||||||
|
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||||
|
c[1], c[0] = madd2(v, y[2], c[1], t[2])
|
||||||
|
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||||
|
c[1], c[0] = madd2(v, y[3], c[1], t[3])
|
||||||
|
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||||
}
|
}
|
||||||
|
|
||||||
// if l == 1
|
// if z > q --> z -= q
|
||||||
if (l[3] == 1011752739694698287) && (l[2] == 7381016538464732718) && (l[1] == 3962172157175319849) && (l[0] == 12436184717236109307) {
|
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||||
return 1
|
var b uint64
|
||||||
|
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||||
|
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
||||||
|
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
||||||
|
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
||||||
}
|
}
|
||||||
return -1
|
return z
|
||||||
}
|
}
|
||||||
|
|
||||||
// Sqrt z = √x mod q
|
// MulAssign z = z * x mod q
|
||||||
// if the square root doesn't exist (x is not a square mod q)
|
func (z *Element) MulAssign(x *Element) *Element {
|
||||||
// Sqrt leaves z unchanged and returns nil
|
|
||||||
func (z *Element) Sqrt(x *Element) *Element {
|
|
||||||
// q ≡ 1 (mod 4)
|
|
||||||
// see modSqrtTonelliShanks in math/big/int.go
|
|
||||||
// using https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
|
|
||||||
|
|
||||||
var y, b, t, w Element
|
var t [4]uint64
|
||||||
// w = x^((s-1)/2))
|
var c [3]uint64
|
||||||
w.Exp(*x,
|
{
|
||||||
14829091926808964255,
|
// round 0
|
||||||
867720185306366531,
|
v := z[0]
|
||||||
688207751544974772,
|
c[1], c[0] = bits.Mul64(v, x[0])
|
||||||
6495040407,
|
m := c[0] * 14042775128853446655
|
||||||
)
|
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||||
|
c[1], c[0] = madd1(v, x[1], c[1])
|
||||||
// y = x^((s+1)/2)) = w * x
|
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||||
y.Mul(x, &w)
|
c[1], c[0] = madd1(v, x[2], c[1])
|
||||||
|
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||||
// b = x^s = w * w * x = y * x
|
c[1], c[0] = madd1(v, x[3], c[1])
|
||||||
b.Mul(&w, &y)
|
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||||
|
|
||||||
// g = nonResidue ^ s
|
|
||||||
var g = Element{
|
|
||||||
7164790868263648668,
|
|
||||||
11685701338293206998,
|
|
||||||
6216421865291908056,
|
|
||||||
1756667274303109607,
|
|
||||||
}
|
}
|
||||||
r := uint64(28)
|
{
|
||||||
|
// round 1
|
||||||
// compute legendre symbol
|
v := z[1]
|
||||||
// t = x^((q-1)/2) = r-1 squaring of x^s
|
c[1], c[0] = madd1(v, x[0], t[0])
|
||||||
t = b
|
m := c[0] * 14042775128853446655
|
||||||
for i := uint64(0); i < r-1; i++ {
|
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||||
t.Square(&t)
|
c[1], c[0] = madd2(v, x[1], c[1], t[1])
|
||||||
|
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||||
|
c[1], c[0] = madd2(v, x[2], c[1], t[2])
|
||||||
|
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||||
|
c[1], c[0] = madd2(v, x[3], c[1], t[3])
|
||||||
|
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||||
}
|
}
|
||||||
if t.IsZero() {
|
{
|
||||||
return z.SetZero()
|
// round 2
|
||||||
|
v := z[2]
|
||||||
|
c[1], c[0] = madd1(v, x[0], t[0])
|
||||||
|
m := c[0] * 14042775128853446655
|
||||||
|
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||||
|
c[1], c[0] = madd2(v, x[1], c[1], t[1])
|
||||||
|
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||||
|
c[1], c[0] = madd2(v, x[2], c[1], t[2])
|
||||||
|
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||||
|
c[1], c[0] = madd2(v, x[3], c[1], t[3])
|
||||||
|
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||||
}
|
}
|
||||||
if !((t[3] == 1011752739694698287) && (t[2] == 7381016538464732718) && (t[1] == 3962172157175319849) && (t[0] == 12436184717236109307)) {
|
{
|
||||||
// t != 1, we don't have a square root
|
// round 3
|
||||||
return nil
|
v := z[3]
|
||||||
}
|
c[1], c[0] = madd1(v, x[0], t[0])
|
||||||
for {
|
m := c[0] * 14042775128853446655
|
||||||
var m uint64
|
c[2] = madd0(m, 4891460686036598785, c[0])
|
||||||
t = b
|
c[1], c[0] = madd2(v, x[1], c[1], t[1])
|
||||||
|
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
||||||
// for t != 1
|
c[1], c[0] = madd2(v, x[2], c[1], t[2])
|
||||||
for !((t[3] == 1011752739694698287) && (t[2] == 7381016538464732718) && (t[1] == 3962172157175319849) && (t[0] == 12436184717236109307)) {
|
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
||||||
t.Square(&t)
|
c[1], c[0] = madd2(v, x[3], c[1], t[3])
|
||||||
m++
|
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
||||||
}
|
}
|
||||||
|
|
||||||
if m == 0 {
|
// if z > q --> z -= q
|
||||||
return z.Set(&y)
|
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||||
}
|
var b uint64
|
||||||
// t = g^(2^(r-m-1)) mod q
|
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||||
ge := int(r - m - 1)
|
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
||||||
t = g
|
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
||||||
for ge > 0 {
|
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
||||||
t.Square(&t)
|
|
||||||
ge--
|
|
||||||
}
|
|
||||||
|
|
||||||
g.Square(&t)
|
|
||||||
y.MulAssign(&t)
|
|
||||||
b.MulAssign(&g)
|
|
||||||
r = m
|
|
||||||
}
|
}
|
||||||
|
return z
|
||||||
|
}
|
||||||
|
|
||||||
|
// Square z = x * x mod q
|
||||||
|
func (z *Element) Square(x *Element) *Element {
|
||||||
|
|
||||||
|
var p [4]uint64
|
||||||
|
|
||||||
|
var u, v uint64
|
||||||
|
{
|
||||||
|
// round 0
|
||||||
|
u, p[0] = bits.Mul64(x[0], x[0])
|
||||||
|
m := p[0] * 14042775128853446655
|
||||||
|
C := madd0(m, 4891460686036598785, p[0])
|
||||||
|
var t uint64
|
||||||
|
t, u, v = madd1sb(x[0], x[1], u)
|
||||||
|
C, p[0] = madd2(m, 2896914383306846353, v, C)
|
||||||
|
t, u, v = madd1s(x[0], x[2], t, u)
|
||||||
|
C, p[1] = madd2(m, 13281191951274694749, v, C)
|
||||||
|
_, u, v = madd1s(x[0], x[3], t, u)
|
||||||
|
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
|
||||||
|
}
|
||||||
|
{
|
||||||
|
// round 1
|
||||||
|
m := p[0] * 14042775128853446655
|
||||||
|
C := madd0(m, 4891460686036598785, p[0])
|
||||||
|
u, v = madd1(x[1], x[1], p[1])
|
||||||
|
C, p[0] = madd2(m, 2896914383306846353, v, C)
|
||||||
|
var t uint64
|
||||||
|
t, u, v = madd2sb(x[1], x[2], p[2], u)
|
||||||
|
C, p[1] = madd2(m, 13281191951274694749, v, C)
|
||||||
|
_, u, v = madd2s(x[1], x[3], p[3], t, u)
|
||||||
|
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
|
||||||
|
}
|
||||||
|
{
|
||||||
|
// round 2
|
||||||
|
m := p[0] * 14042775128853446655
|
||||||
|
C := madd0(m, 4891460686036598785, p[0])
|
||||||
|
C, p[0] = madd2(m, 2896914383306846353, p[1], C)
|
||||||
|
u, v = madd1(x[2], x[2], p[2])
|
||||||
|
C, p[1] = madd2(m, 13281191951274694749, v, C)
|
||||||
|
_, u, v = madd2sb(x[2], x[3], p[3], u)
|
||||||
|
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
|
||||||
|
}
|
||||||
|
{
|
||||||
|
// round 3
|
||||||
|
m := p[0] * 14042775128853446655
|
||||||
|
C := madd0(m, 4891460686036598785, p[0])
|
||||||
|
C, z[0] = madd2(m, 2896914383306846353, p[1], C)
|
||||||
|
C, z[1] = madd2(m, 13281191951274694749, p[2], C)
|
||||||
|
u, v = madd1(x[3], x[3], p[3])
|
||||||
|
z[3], z[2] = madd3(m, 3486998266802970665, v, C, u)
|
||||||
|
}
|
||||||
|
|
||||||
|
// if z > q --> z -= q
|
||||||
|
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
||||||
|
var b uint64
|
||||||
|
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
||||||
|
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
||||||
|
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
||||||
|
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
||||||
|
}
|
||||||
|
return z
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,170 +0,0 @@
|
|||||||
// +build !amd64
|
|
||||||
|
|
||||||
// Copyright 2020 ConsenSys AG
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
// Code generated by goff (v0.2.0) DO NOT EDIT
|
|
||||||
|
|
||||||
// Package ff contains field arithmetic operations
|
|
||||||
package ff
|
|
||||||
|
|
||||||
// /!\ WARNING /!\
|
|
||||||
// this code has not been audited and is provided as-is. In particular,
|
|
||||||
// there is no security guarantees such as constant time implementation
|
|
||||||
// or side-channel attack resistance
|
|
||||||
// /!\ WARNING /!\
|
|
||||||
|
|
||||||
import "math/bits"
|
|
||||||
|
|
||||||
// Mul z = x * y mod q
|
|
||||||
// see https://hackmd.io/@zkteam/modular_multiplication
|
|
||||||
func (z *Element) Mul(x, y *Element) *Element {
|
|
||||||
|
|
||||||
var t [4]uint64
|
|
||||||
var c [3]uint64
|
|
||||||
{
|
|
||||||
// round 0
|
|
||||||
v := x[0]
|
|
||||||
c[1], c[0] = bits.Mul64(v, y[0])
|
|
||||||
m := c[0] * 14042775128853446655
|
|
||||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
|
||||||
c[1], c[0] = madd1(v, y[1], c[1])
|
|
||||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
|
||||||
c[1], c[0] = madd1(v, y[2], c[1])
|
|
||||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
|
||||||
c[1], c[0] = madd1(v, y[3], c[1])
|
|
||||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 1
|
|
||||||
v := x[1]
|
|
||||||
c[1], c[0] = madd1(v, y[0], t[0])
|
|
||||||
m := c[0] * 14042775128853446655
|
|
||||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
|
||||||
c[1], c[0] = madd2(v, y[1], c[1], t[1])
|
|
||||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, y[2], c[1], t[2])
|
|
||||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, y[3], c[1], t[3])
|
|
||||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 2
|
|
||||||
v := x[2]
|
|
||||||
c[1], c[0] = madd1(v, y[0], t[0])
|
|
||||||
m := c[0] * 14042775128853446655
|
|
||||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
|
||||||
c[1], c[0] = madd2(v, y[1], c[1], t[1])
|
|
||||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, y[2], c[1], t[2])
|
|
||||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, y[3], c[1], t[3])
|
|
||||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 3
|
|
||||||
v := x[3]
|
|
||||||
c[1], c[0] = madd1(v, y[0], t[0])
|
|
||||||
m := c[0] * 14042775128853446655
|
|
||||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
|
||||||
c[1], c[0] = madd2(v, y[1], c[1], t[1])
|
|
||||||
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, y[2], c[1], t[2])
|
|
||||||
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, y[3], c[1], t[3])
|
|
||||||
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
|
||||||
}
|
|
||||||
|
|
||||||
// if z > q --> z -= q
|
|
||||||
// note: this is NOT constant time
|
|
||||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
|
||||||
var b uint64
|
|
||||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
|
||||||
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
|
||||||
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
|
||||||
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
|
||||||
}
|
|
||||||
return z
|
|
||||||
}
|
|
||||||
|
|
||||||
// MulAssign z = z * x mod q
|
|
||||||
// see https://hackmd.io/@zkteam/modular_multiplication
|
|
||||||
func (z *Element) MulAssign(x *Element) *Element {
|
|
||||||
|
|
||||||
var t [4]uint64
|
|
||||||
var c [3]uint64
|
|
||||||
{
|
|
||||||
// round 0
|
|
||||||
v := z[0]
|
|
||||||
c[1], c[0] = bits.Mul64(v, x[0])
|
|
||||||
m := c[0] * 14042775128853446655
|
|
||||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
|
||||||
c[1], c[0] = madd1(v, x[1], c[1])
|
|
||||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
|
||||||
c[1], c[0] = madd1(v, x[2], c[1])
|
|
||||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
|
||||||
c[1], c[0] = madd1(v, x[3], c[1])
|
|
||||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 1
|
|
||||||
v := z[1]
|
|
||||||
c[1], c[0] = madd1(v, x[0], t[0])
|
|
||||||
m := c[0] * 14042775128853446655
|
|
||||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[1], c[1], t[1])
|
|
||||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[2], c[1], t[2])
|
|
||||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[3], c[1], t[3])
|
|
||||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 2
|
|
||||||
v := z[2]
|
|
||||||
c[1], c[0] = madd1(v, x[0], t[0])
|
|
||||||
m := c[0] * 14042775128853446655
|
|
||||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[1], c[1], t[1])
|
|
||||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[2], c[1], t[2])
|
|
||||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[3], c[1], t[3])
|
|
||||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 3
|
|
||||||
v := z[3]
|
|
||||||
c[1], c[0] = madd1(v, x[0], t[0])
|
|
||||||
m := c[0] * 14042775128853446655
|
|
||||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[1], c[1], t[1])
|
|
||||||
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[2], c[1], t[2])
|
|
||||||
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[3], c[1], t[3])
|
|
||||||
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
|
||||||
}
|
|
||||||
|
|
||||||
// if z > q --> z -= q
|
|
||||||
// note: this is NOT constant time
|
|
||||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
|
||||||
var b uint64
|
|
||||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
|
||||||
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
|
||||||
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
|
||||||
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
|
||||||
}
|
|
||||||
return z
|
|
||||||
}
|
|
||||||
@@ -1,39 +0,0 @@
|
|||||||
// Copyright 2020 ConsenSys AG
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
// Code generated by goff (v0.2.0) DO NOT EDIT
|
|
||||||
|
|
||||||
// Package ff contains field arithmetic operations
|
|
||||||
package ff
|
|
||||||
|
|
||||||
// MulAssignElement z = z * x mod q (constant time)
|
|
||||||
// calling this instead of z.MulAssign(x) is prefered for performance critical path
|
|
||||||
//go:noescape
|
|
||||||
func MulAssignElement(res, y *Element)
|
|
||||||
|
|
||||||
// Mul z = x * y mod q (constant time)
|
|
||||||
// see https://hackmd.io/@zkteam/modular_multiplication
|
|
||||||
func (z *Element) Mul(x, y *Element) *Element {
|
|
||||||
res := *x
|
|
||||||
MulAssignElement(&res, y)
|
|
||||||
z.Set(&res)
|
|
||||||
return z
|
|
||||||
}
|
|
||||||
|
|
||||||
// MulAssign z = z * x mod q (constant time)
|
|
||||||
// see https://hackmd.io/@zkteam/modular_multiplication
|
|
||||||
func (z *Element) MulAssign(x *Element) *Element {
|
|
||||||
MulAssignElement(z, x)
|
|
||||||
return z
|
|
||||||
}
|
|
||||||
@@ -1,695 +0,0 @@
|
|||||||
// Code generated by goff (v0.2.0) DO NOT EDIT
|
|
||||||
|
|
||||||
#include "textflag.h"
|
|
||||||
|
|
||||||
// func MulAssignElement(res,y *Element)
|
|
||||||
// montgomery multiplication of res by y
|
|
||||||
// stores the result in res
|
|
||||||
TEXT ·MulAssignElement(SB), NOSPLIT, $0-16
|
|
||||||
|
|
||||||
// dereference our parameters
|
|
||||||
MOVQ res+0(FP), DI
|
|
||||||
MOVQ y+8(FP), R8
|
|
||||||
|
|
||||||
// check if we support adx and mulx
|
|
||||||
CMPB ·supportAdx(SB), $1
|
|
||||||
JNE no_adx
|
|
||||||
|
|
||||||
// the algorithm is described here
|
|
||||||
// https://hackmd.io/@zkteam/modular_multiplication
|
|
||||||
// however, to benefit from the ADCX and ADOX carry chains
|
|
||||||
// we split the inner loops in 2:
|
|
||||||
// for i=0 to N-1
|
|
||||||
// for j=0 to N-1
|
|
||||||
// (A,t[j]) := t[j] + a[j]*b[i] + A
|
|
||||||
// m := t[0]*q'[0] mod W
|
|
||||||
// C,_ := t[0] + m*q[0]
|
|
||||||
// for j=1 to N-1
|
|
||||||
// (C,t[j-1]) := t[j] + m*q[j] + C
|
|
||||||
// t[N-1] = C + A
|
|
||||||
|
|
||||||
// ---------------------------------------------------------------------------------------------
|
|
||||||
// outter loop 0
|
|
||||||
|
|
||||||
// clear up the carry flags
|
|
||||||
XORQ R9 , R9
|
|
||||||
|
|
||||||
// R12 = y[0]
|
|
||||||
MOVQ 0(R8), R12
|
|
||||||
|
|
||||||
// for j=0 to N-1
|
|
||||||
// (A,t[j]) := t[j] + x[j]*y[i] + A
|
|
||||||
|
|
||||||
// DX = res[0]
|
|
||||||
MOVQ 0(DI), DX
|
|
||||||
MULXQ R12, CX , R9
|
|
||||||
|
|
||||||
// DX = res[1]
|
|
||||||
MOVQ 8(DI), DX
|
|
||||||
MOVQ R9, BX
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, BX
|
|
||||||
|
|
||||||
// DX = res[2]
|
|
||||||
MOVQ 16(DI), DX
|
|
||||||
MOVQ R9, BP
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, BP
|
|
||||||
|
|
||||||
// DX = res[3]
|
|
||||||
MOVQ 24(DI), DX
|
|
||||||
MOVQ R9, SI
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, SI
|
|
||||||
|
|
||||||
// add the last carries to R9
|
|
||||||
MOVQ $0, DX
|
|
||||||
ADCXQ DX, R9
|
|
||||||
ADOXQ DX, R9
|
|
||||||
|
|
||||||
// m := t[0]*q'[0] mod W
|
|
||||||
MOVQ $0xc2e1f593efffffff, DX
|
|
||||||
MULXQ CX,R11, DX
|
|
||||||
|
|
||||||
// clear the carry flags
|
|
||||||
XORQ DX, DX
|
|
||||||
|
|
||||||
// C,_ := t[0] + m*q[0]
|
|
||||||
MOVQ $0x43e1f593f0000001, DX
|
|
||||||
MULXQ R11, AX, R10
|
|
||||||
ADCXQ CX ,AX
|
|
||||||
|
|
||||||
// for j=1 to N-1
|
|
||||||
// (C,t[j-1]) := t[j] + m*q[j] + C
|
|
||||||
|
|
||||||
MOVQ $0x2833e84879b97091, DX
|
|
||||||
MULXQ R11, AX, DX
|
|
||||||
ADCXQ BX, R10
|
|
||||||
ADOXQ AX, R10
|
|
||||||
MOVQ R10, CX
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
MOVQ $0xb85045b68181585d, DX
|
|
||||||
MULXQ R11, AX, DX
|
|
||||||
ADCXQ BP, R10
|
|
||||||
ADOXQ AX, R10
|
|
||||||
MOVQ R10, BX
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
MOVQ $0x30644e72e131a029, DX
|
|
||||||
MULXQ R11, AX, DX
|
|
||||||
ADCXQ SI, R10
|
|
||||||
ADOXQ AX, R10
|
|
||||||
MOVQ R10, BP
|
|
||||||
MOVQ $0, AX
|
|
||||||
ADCXQ AX, DX
|
|
||||||
ADOXQ DX, R9
|
|
||||||
MOVQ R9, SI
|
|
||||||
|
|
||||||
// ---------------------------------------------------------------------------------------------
|
|
||||||
// outter loop 1
|
|
||||||
|
|
||||||
// clear up the carry flags
|
|
||||||
XORQ R9 , R9
|
|
||||||
|
|
||||||
// R12 = y[1]
|
|
||||||
MOVQ 8(R8), R12
|
|
||||||
|
|
||||||
// for j=0 to N-1
|
|
||||||
// (A,t[j]) := t[j] + x[j]*y[i] + A
|
|
||||||
|
|
||||||
// DX = res[0]
|
|
||||||
MOVQ 0(DI), DX
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, CX
|
|
||||||
|
|
||||||
// DX = res[1]
|
|
||||||
MOVQ 8(DI), DX
|
|
||||||
ADCXQ R9, BX
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, BX
|
|
||||||
|
|
||||||
// DX = res[2]
|
|
||||||
MOVQ 16(DI), DX
|
|
||||||
ADCXQ R9, BP
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, BP
|
|
||||||
|
|
||||||
// DX = res[3]
|
|
||||||
MOVQ 24(DI), DX
|
|
||||||
ADCXQ R9, SI
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, SI
|
|
||||||
|
|
||||||
// add the last carries to R9
|
|
||||||
MOVQ $0, DX
|
|
||||||
ADCXQ DX, R9
|
|
||||||
ADOXQ DX, R9
|
|
||||||
|
|
||||||
// m := t[0]*q'[0] mod W
|
|
||||||
MOVQ $0xc2e1f593efffffff, DX
|
|
||||||
MULXQ CX,R11, DX
|
|
||||||
|
|
||||||
// clear the carry flags
|
|
||||||
XORQ DX, DX
|
|
||||||
|
|
||||||
// C,_ := t[0] + m*q[0]
|
|
||||||
MOVQ $0x43e1f593f0000001, DX
|
|
||||||
MULXQ R11, AX, R10
|
|
||||||
ADCXQ CX ,AX
|
|
||||||
|
|
||||||
// for j=1 to N-1
|
|
||||||
// (C,t[j-1]) := t[j] + m*q[j] + C
|
|
||||||
|
|
||||||
MOVQ $0x2833e84879b97091, DX
|
|
||||||
MULXQ R11, AX, DX
|
|
||||||
ADCXQ BX, R10
|
|
||||||
ADOXQ AX, R10
|
|
||||||
MOVQ R10, CX
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
MOVQ $0xb85045b68181585d, DX
|
|
||||||
MULXQ R11, AX, DX
|
|
||||||
ADCXQ BP, R10
|
|
||||||
ADOXQ AX, R10
|
|
||||||
MOVQ R10, BX
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
MOVQ $0x30644e72e131a029, DX
|
|
||||||
MULXQ R11, AX, DX
|
|
||||||
ADCXQ SI, R10
|
|
||||||
ADOXQ AX, R10
|
|
||||||
MOVQ R10, BP
|
|
||||||
MOVQ $0, AX
|
|
||||||
ADCXQ AX, DX
|
|
||||||
ADOXQ DX, R9
|
|
||||||
MOVQ R9, SI
|
|
||||||
|
|
||||||
// ---------------------------------------------------------------------------------------------
|
|
||||||
// outter loop 2
|
|
||||||
|
|
||||||
// clear up the carry flags
|
|
||||||
XORQ R9 , R9
|
|
||||||
|
|
||||||
// R12 = y[2]
|
|
||||||
MOVQ 16(R8), R12
|
|
||||||
|
|
||||||
// for j=0 to N-1
|
|
||||||
// (A,t[j]) := t[j] + x[j]*y[i] + A
|
|
||||||
|
|
||||||
// DX = res[0]
|
|
||||||
MOVQ 0(DI), DX
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, CX
|
|
||||||
|
|
||||||
// DX = res[1]
|
|
||||||
MOVQ 8(DI), DX
|
|
||||||
ADCXQ R9, BX
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, BX
|
|
||||||
|
|
||||||
// DX = res[2]
|
|
||||||
MOVQ 16(DI), DX
|
|
||||||
ADCXQ R9, BP
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, BP
|
|
||||||
|
|
||||||
// DX = res[3]
|
|
||||||
MOVQ 24(DI), DX
|
|
||||||
ADCXQ R9, SI
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, SI
|
|
||||||
|
|
||||||
// add the last carries to R9
|
|
||||||
MOVQ $0, DX
|
|
||||||
ADCXQ DX, R9
|
|
||||||
ADOXQ DX, R9
|
|
||||||
|
|
||||||
// m := t[0]*q'[0] mod W
|
|
||||||
MOVQ $0xc2e1f593efffffff, DX
|
|
||||||
MULXQ CX,R11, DX
|
|
||||||
|
|
||||||
// clear the carry flags
|
|
||||||
XORQ DX, DX
|
|
||||||
|
|
||||||
// C,_ := t[0] + m*q[0]
|
|
||||||
MOVQ $0x43e1f593f0000001, DX
|
|
||||||
MULXQ R11, AX, R10
|
|
||||||
ADCXQ CX ,AX
|
|
||||||
|
|
||||||
// for j=1 to N-1
|
|
||||||
// (C,t[j-1]) := t[j] + m*q[j] + C
|
|
||||||
|
|
||||||
MOVQ $0x2833e84879b97091, DX
|
|
||||||
MULXQ R11, AX, DX
|
|
||||||
ADCXQ BX, R10
|
|
||||||
ADOXQ AX, R10
|
|
||||||
MOVQ R10, CX
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
MOVQ $0xb85045b68181585d, DX
|
|
||||||
MULXQ R11, AX, DX
|
|
||||||
ADCXQ BP, R10
|
|
||||||
ADOXQ AX, R10
|
|
||||||
MOVQ R10, BX
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
MOVQ $0x30644e72e131a029, DX
|
|
||||||
MULXQ R11, AX, DX
|
|
||||||
ADCXQ SI, R10
|
|
||||||
ADOXQ AX, R10
|
|
||||||
MOVQ R10, BP
|
|
||||||
MOVQ $0, AX
|
|
||||||
ADCXQ AX, DX
|
|
||||||
ADOXQ DX, R9
|
|
||||||
MOVQ R9, SI
|
|
||||||
|
|
||||||
// ---------------------------------------------------------------------------------------------
|
|
||||||
// outter loop 3
|
|
||||||
|
|
||||||
// clear up the carry flags
|
|
||||||
XORQ R9 , R9
|
|
||||||
|
|
||||||
// R12 = y[3]
|
|
||||||
MOVQ 24(R8), R12
|
|
||||||
|
|
||||||
// for j=0 to N-1
|
|
||||||
// (A,t[j]) := t[j] + x[j]*y[i] + A
|
|
||||||
|
|
||||||
// DX = res[0]
|
|
||||||
MOVQ 0(DI), DX
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, CX
|
|
||||||
|
|
||||||
// DX = res[1]
|
|
||||||
MOVQ 8(DI), DX
|
|
||||||
ADCXQ R9, BX
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, BX
|
|
||||||
|
|
||||||
// DX = res[2]
|
|
||||||
MOVQ 16(DI), DX
|
|
||||||
ADCXQ R9, BP
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, BP
|
|
||||||
|
|
||||||
// DX = res[3]
|
|
||||||
MOVQ 24(DI), DX
|
|
||||||
ADCXQ R9, SI
|
|
||||||
MULXQ R12, AX, R9
|
|
||||||
ADOXQ AX, SI
|
|
||||||
|
|
||||||
// add the last carries to R9
|
|
||||||
MOVQ $0, DX
|
|
||||||
ADCXQ DX, R9
|
|
||||||
ADOXQ DX, R9
|
|
||||||
|
|
||||||
// m := t[0]*q'[0] mod W
|
|
||||||
MOVQ $0xc2e1f593efffffff, DX
|
|
||||||
MULXQ CX,R11, DX
|
|
||||||
|
|
||||||
// clear the carry flags
|
|
||||||
XORQ DX, DX
|
|
||||||
|
|
||||||
// C,_ := t[0] + m*q[0]
|
|
||||||
MOVQ $0x43e1f593f0000001, DX
|
|
||||||
MULXQ R11, AX, R10
|
|
||||||
ADCXQ CX ,AX
|
|
||||||
|
|
||||||
// for j=1 to N-1
|
|
||||||
// (C,t[j-1]) := t[j] + m*q[j] + C
|
|
||||||
|
|
||||||
MOVQ $0x2833e84879b97091, DX
|
|
||||||
MULXQ R11, AX, DX
|
|
||||||
ADCXQ BX, R10
|
|
||||||
ADOXQ AX, R10
|
|
||||||
MOVQ R10, CX
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
MOVQ $0xb85045b68181585d, DX
|
|
||||||
MULXQ R11, AX, DX
|
|
||||||
ADCXQ BP, R10
|
|
||||||
ADOXQ AX, R10
|
|
||||||
MOVQ R10, BX
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
MOVQ $0x30644e72e131a029, DX
|
|
||||||
MULXQ R11, AX, DX
|
|
||||||
ADCXQ SI, R10
|
|
||||||
ADOXQ AX, R10
|
|
||||||
MOVQ R10, BP
|
|
||||||
MOVQ $0, AX
|
|
||||||
ADCXQ AX, DX
|
|
||||||
ADOXQ DX, R9
|
|
||||||
MOVQ R9, SI
|
|
||||||
|
|
||||||
reduce:
|
|
||||||
// reduce, constant time version
|
|
||||||
// first we copy registers storing t in a separate set of registers
|
|
||||||
// as SUBQ modifies the 2nd operand
|
|
||||||
MOVQ CX, DX
|
|
||||||
MOVQ BX, R8
|
|
||||||
MOVQ BP, R9
|
|
||||||
MOVQ SI, R10
|
|
||||||
MOVQ $0x43e1f593f0000001, R11
|
|
||||||
SUBQ R11, DX
|
|
||||||
MOVQ $0x2833e84879b97091, R11
|
|
||||||
SBBQ R11, R8
|
|
||||||
MOVQ $0xb85045b68181585d, R11
|
|
||||||
SBBQ R11, R9
|
|
||||||
MOVQ $0x30644e72e131a029, R11
|
|
||||||
SBBQ R11, R10
|
|
||||||
JCS t_is_smaller // no borrow, we return t
|
|
||||||
|
|
||||||
// borrow is set, we return u
|
|
||||||
MOVQ DX, (DI)
|
|
||||||
MOVQ R8, 8(DI)
|
|
||||||
MOVQ R9, 16(DI)
|
|
||||||
MOVQ R10, 24(DI)
|
|
||||||
RET
|
|
||||||
t_is_smaller:
|
|
||||||
MOVQ CX, 0(DI)
|
|
||||||
MOVQ BX, 8(DI)
|
|
||||||
MOVQ BP, 16(DI)
|
|
||||||
MOVQ SI, 24(DI)
|
|
||||||
RET
|
|
||||||
|
|
||||||
no_adx:
|
|
||||||
|
|
||||||
// ---------------------------------------------------------------------------------------------
|
|
||||||
// outter loop 0
|
|
||||||
|
|
||||||
// (A,t[0]) := t[0] + x[0]*y[0]
|
|
||||||
MOVQ (DI), AX // x[0]
|
|
||||||
MOVQ 0(R8), R12
|
|
||||||
MULQ R12 // x[0] * y[0]
|
|
||||||
MOVQ DX, R9
|
|
||||||
MOVQ AX, CX
|
|
||||||
|
|
||||||
// m := t[0]*q'[0] mod W
|
|
||||||
MOVQ $0xc2e1f593efffffff, R11
|
|
||||||
IMULQ CX , R11
|
|
||||||
|
|
||||||
// C,_ := t[0] + m*q[0]
|
|
||||||
MOVQ $0x43e1f593f0000001, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ CX ,AX
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
// for j=1 to N-1
|
|
||||||
// (A,t[j]) := t[j] + x[j]*y[i] + A
|
|
||||||
// (C,t[j-1]) := t[j] + m*q[j] + C
|
|
||||||
MOVQ 8(DI), AX
|
|
||||||
MULQ R12 // x[1] * y[0]
|
|
||||||
MOVQ R9, BX
|
|
||||||
ADDQ AX, BX
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
MOVQ $0x2833e84879b97091, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ BX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
|
|
||||||
MOVQ R10, CX
|
|
||||||
MOVQ DX, R10
|
|
||||||
MOVQ 16(DI), AX
|
|
||||||
MULQ R12 // x[2] * y[0]
|
|
||||||
MOVQ R9, BP
|
|
||||||
ADDQ AX, BP
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
MOVQ $0xb85045b68181585d, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ BP, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
|
|
||||||
MOVQ R10, BX
|
|
||||||
MOVQ DX, R10
|
|
||||||
MOVQ 24(DI), AX
|
|
||||||
MULQ R12 // x[3] * y[0]
|
|
||||||
MOVQ R9, SI
|
|
||||||
ADDQ AX, SI
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
MOVQ $0x30644e72e131a029, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ SI, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
|
|
||||||
MOVQ R10, BP
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
ADDQ R10, R9
|
|
||||||
MOVQ R9, SI
|
|
||||||
|
|
||||||
// ---------------------------------------------------------------------------------------------
|
|
||||||
// outter loop 1
|
|
||||||
|
|
||||||
// (A,t[0]) := t[0] + x[0]*y[1]
|
|
||||||
MOVQ (DI), AX // x[0]
|
|
||||||
MOVQ 8(R8), R12
|
|
||||||
MULQ R12 // x[0] * y[1]
|
|
||||||
ADDQ AX, CX
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
// m := t[0]*q'[0] mod W
|
|
||||||
MOVQ $0xc2e1f593efffffff, R11
|
|
||||||
IMULQ CX , R11
|
|
||||||
|
|
||||||
// C,_ := t[0] + m*q[0]
|
|
||||||
MOVQ $0x43e1f593f0000001, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ CX ,AX
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
// for j=1 to N-1
|
|
||||||
// (A,t[j]) := t[j] + x[j]*y[i] + A
|
|
||||||
// (C,t[j-1]) := t[j] + m*q[j] + C
|
|
||||||
MOVQ 8(DI), AX
|
|
||||||
MULQ R12 // x[1] * y[1]
|
|
||||||
ADDQ R9, BX
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, BX
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
MOVQ $0x2833e84879b97091, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ BX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
|
|
||||||
MOVQ R10, CX
|
|
||||||
MOVQ DX, R10
|
|
||||||
MOVQ 16(DI), AX
|
|
||||||
MULQ R12 // x[2] * y[1]
|
|
||||||
ADDQ R9, BP
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, BP
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
MOVQ $0xb85045b68181585d, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ BP, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
|
|
||||||
MOVQ R10, BX
|
|
||||||
MOVQ DX, R10
|
|
||||||
MOVQ 24(DI), AX
|
|
||||||
MULQ R12 // x[3] * y[1]
|
|
||||||
ADDQ R9, SI
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, SI
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
MOVQ $0x30644e72e131a029, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ SI, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
|
|
||||||
MOVQ R10, BP
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
ADDQ R10, R9
|
|
||||||
MOVQ R9, SI
|
|
||||||
|
|
||||||
// ---------------------------------------------------------------------------------------------
|
|
||||||
// outter loop 2
|
|
||||||
|
|
||||||
// (A,t[0]) := t[0] + x[0]*y[2]
|
|
||||||
MOVQ (DI), AX // x[0]
|
|
||||||
MOVQ 16(R8), R12
|
|
||||||
MULQ R12 // x[0] * y[2]
|
|
||||||
ADDQ AX, CX
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
// m := t[0]*q'[0] mod W
|
|
||||||
MOVQ $0xc2e1f593efffffff, R11
|
|
||||||
IMULQ CX , R11
|
|
||||||
|
|
||||||
// C,_ := t[0] + m*q[0]
|
|
||||||
MOVQ $0x43e1f593f0000001, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ CX ,AX
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
// for j=1 to N-1
|
|
||||||
// (A,t[j]) := t[j] + x[j]*y[i] + A
|
|
||||||
// (C,t[j-1]) := t[j] + m*q[j] + C
|
|
||||||
MOVQ 8(DI), AX
|
|
||||||
MULQ R12 // x[1] * y[2]
|
|
||||||
ADDQ R9, BX
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, BX
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
MOVQ $0x2833e84879b97091, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ BX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
|
|
||||||
MOVQ R10, CX
|
|
||||||
MOVQ DX, R10
|
|
||||||
MOVQ 16(DI), AX
|
|
||||||
MULQ R12 // x[2] * y[2]
|
|
||||||
ADDQ R9, BP
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, BP
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
MOVQ $0xb85045b68181585d, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ BP, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
|
|
||||||
MOVQ R10, BX
|
|
||||||
MOVQ DX, R10
|
|
||||||
MOVQ 24(DI), AX
|
|
||||||
MULQ R12 // x[3] * y[2]
|
|
||||||
ADDQ R9, SI
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, SI
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
MOVQ $0x30644e72e131a029, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ SI, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
|
|
||||||
MOVQ R10, BP
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
ADDQ R10, R9
|
|
||||||
MOVQ R9, SI
|
|
||||||
|
|
||||||
// ---------------------------------------------------------------------------------------------
|
|
||||||
// outter loop 3
|
|
||||||
|
|
||||||
// (A,t[0]) := t[0] + x[0]*y[3]
|
|
||||||
MOVQ (DI), AX // x[0]
|
|
||||||
MOVQ 24(R8), R12
|
|
||||||
MULQ R12 // x[0] * y[3]
|
|
||||||
ADDQ AX, CX
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
// m := t[0]*q'[0] mod W
|
|
||||||
MOVQ $0xc2e1f593efffffff, R11
|
|
||||||
IMULQ CX , R11
|
|
||||||
|
|
||||||
// C,_ := t[0] + m*q[0]
|
|
||||||
MOVQ $0x43e1f593f0000001, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ CX ,AX
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
// for j=1 to N-1
|
|
||||||
// (A,t[j]) := t[j] + x[j]*y[i] + A
|
|
||||||
// (C,t[j-1]) := t[j] + m*q[j] + C
|
|
||||||
MOVQ 8(DI), AX
|
|
||||||
MULQ R12 // x[1] * y[3]
|
|
||||||
ADDQ R9, BX
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, BX
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
MOVQ $0x2833e84879b97091, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ BX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
|
|
||||||
MOVQ R10, CX
|
|
||||||
MOVQ DX, R10
|
|
||||||
MOVQ 16(DI), AX
|
|
||||||
MULQ R12 // x[2] * y[3]
|
|
||||||
ADDQ R9, BP
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, BP
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
MOVQ $0xb85045b68181585d, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ BP, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
|
|
||||||
MOVQ R10, BX
|
|
||||||
MOVQ DX, R10
|
|
||||||
MOVQ 24(DI), AX
|
|
||||||
MULQ R12 // x[3] * y[3]
|
|
||||||
ADDQ R9, SI
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, SI
|
|
||||||
ADCQ $0, DX
|
|
||||||
MOVQ DX, R9
|
|
||||||
|
|
||||||
MOVQ $0x30644e72e131a029, AX
|
|
||||||
MULQ R11
|
|
||||||
ADDQ SI, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
ADDQ AX, R10
|
|
||||||
ADCQ $0, DX
|
|
||||||
|
|
||||||
MOVQ R10, BP
|
|
||||||
MOVQ DX, R10
|
|
||||||
|
|
||||||
ADDQ R10, R9
|
|
||||||
MOVQ R9, SI
|
|
||||||
|
|
||||||
JMP reduce
|
|
||||||
@@ -1,93 +0,0 @@
|
|||||||
// +build !amd64
|
|
||||||
|
|
||||||
// Copyright 2020 ConsenSys AG
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
// Code generated by goff (v0.2.0) DO NOT EDIT
|
|
||||||
|
|
||||||
// Package ff contains field arithmetic operations
|
|
||||||
package ff
|
|
||||||
|
|
||||||
// /!\ WARNING /!\
|
|
||||||
// this code has not been audited and is provided as-is. In particular,
|
|
||||||
// there is no security guarantees such as constant time implementation
|
|
||||||
// or side-channel attack resistance
|
|
||||||
// /!\ WARNING /!\
|
|
||||||
|
|
||||||
import "math/bits"
|
|
||||||
|
|
||||||
// Square z = x * x mod q
|
|
||||||
// see https://hackmd.io/@zkteam/modular_multiplication
|
|
||||||
func (z *Element) Square(x *Element) *Element {
|
|
||||||
|
|
||||||
var p [4]uint64
|
|
||||||
|
|
||||||
var u, v uint64
|
|
||||||
{
|
|
||||||
// round 0
|
|
||||||
u, p[0] = bits.Mul64(x[0], x[0])
|
|
||||||
m := p[0] * 14042775128853446655
|
|
||||||
C := madd0(m, 4891460686036598785, p[0])
|
|
||||||
var t uint64
|
|
||||||
t, u, v = madd1sb(x[0], x[1], u)
|
|
||||||
C, p[0] = madd2(m, 2896914383306846353, v, C)
|
|
||||||
t, u, v = madd1s(x[0], x[2], t, u)
|
|
||||||
C, p[1] = madd2(m, 13281191951274694749, v, C)
|
|
||||||
_, u, v = madd1s(x[0], x[3], t, u)
|
|
||||||
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 1
|
|
||||||
m := p[0] * 14042775128853446655
|
|
||||||
C := madd0(m, 4891460686036598785, p[0])
|
|
||||||
u, v = madd1(x[1], x[1], p[1])
|
|
||||||
C, p[0] = madd2(m, 2896914383306846353, v, C)
|
|
||||||
var t uint64
|
|
||||||
t, u, v = madd2sb(x[1], x[2], p[2], u)
|
|
||||||
C, p[1] = madd2(m, 13281191951274694749, v, C)
|
|
||||||
_, u, v = madd2s(x[1], x[3], p[3], t, u)
|
|
||||||
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 2
|
|
||||||
m := p[0] * 14042775128853446655
|
|
||||||
C := madd0(m, 4891460686036598785, p[0])
|
|
||||||
C, p[0] = madd2(m, 2896914383306846353, p[1], C)
|
|
||||||
u, v = madd1(x[2], x[2], p[2])
|
|
||||||
C, p[1] = madd2(m, 13281191951274694749, v, C)
|
|
||||||
_, u, v = madd2sb(x[2], x[3], p[3], u)
|
|
||||||
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 3
|
|
||||||
m := p[0] * 14042775128853446655
|
|
||||||
C := madd0(m, 4891460686036598785, p[0])
|
|
||||||
C, z[0] = madd2(m, 2896914383306846353, p[1], C)
|
|
||||||
C, z[1] = madd2(m, 13281191951274694749, p[2], C)
|
|
||||||
u, v = madd1(x[3], x[3], p[3])
|
|
||||||
z[3], z[2] = madd3(m, 3486998266802970665, v, C, u)
|
|
||||||
}
|
|
||||||
|
|
||||||
// if z > q --> z -= q
|
|
||||||
// note: this is NOT constant time
|
|
||||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
|
||||||
var b uint64
|
|
||||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
|
||||||
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
|
||||||
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
|
||||||
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
|
||||||
}
|
|
||||||
return z
|
|
||||||
|
|
||||||
}
|
|
||||||
@@ -1,34 +0,0 @@
|
|||||||
// Copyright 2020 ConsenSys AG
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
// Code generated by goff (v0.2.0) DO NOT EDIT
|
|
||||||
|
|
||||||
// Package ff contains field arithmetic operations
|
|
||||||
package ff
|
|
||||||
|
|
||||||
// SquareElement z = x * x mod q
|
|
||||||
// calling this instead of z.Square(x) is prefered for performance critical path
|
|
||||||
// go - noescape
|
|
||||||
// func SquareElement(res,x *Element)
|
|
||||||
|
|
||||||
// Square z = x * x mod q
|
|
||||||
// see https://hackmd.io/@zkteam/modular_multiplication
|
|
||||||
func (z *Element) Square(x *Element) *Element {
|
|
||||||
if z != x {
|
|
||||||
z.Set(x)
|
|
||||||
}
|
|
||||||
MulAssignElement(z, x)
|
|
||||||
// SquareElement(z, x)
|
|
||||||
return z
|
|
||||||
}
|
|
||||||
@@ -1,26 +1,9 @@
|
|||||||
// Copyright 2020 ConsenSys AG
|
// Code generated by goff DO NOT EDIT
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
// Code generated by goff (v0.2.0) DO NOT EDIT
|
|
||||||
|
|
||||||
// Package ff contains field arithmetic operations
|
|
||||||
package ff
|
package ff
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"crypto/rand"
|
"crypto/rand"
|
||||||
"math/big"
|
"math/big"
|
||||||
"math/bits"
|
|
||||||
mrand "math/rand"
|
mrand "math/rand"
|
||||||
"testing"
|
"testing"
|
||||||
)
|
)
|
||||||
@@ -38,14 +21,7 @@ func TestELEMENTCorrectnessAgainstBigInt(t *testing.T) {
|
|||||||
|
|
||||||
modulusMinusOne.Sub(modulus, &one)
|
modulusMinusOne.Sub(modulus, &one)
|
||||||
|
|
||||||
var n int
|
for i := 0; i < 1000; i++ {
|
||||||
if testing.Short() {
|
|
||||||
n = 10
|
|
||||||
} else {
|
|
||||||
n = 500
|
|
||||||
}
|
|
||||||
|
|
||||||
for i := 0; i < n; i++ {
|
|
||||||
|
|
||||||
// sample 2 random big int
|
// sample 2 random big int
|
||||||
b1, _ := rand.Int(rand.Reader, modulus)
|
b1, _ := rand.Int(rand.Reader, modulus)
|
||||||
@@ -81,7 +57,7 @@ func TestELEMENTCorrectnessAgainstBigInt(t *testing.T) {
|
|||||||
|
|
||||||
rbExp := new(big.Int).SetUint64(rExp)
|
rbExp := new(big.Int).SetUint64(rExp)
|
||||||
|
|
||||||
var bMul, bAdd, bSub, bDiv, bNeg, bLsh, bInv, bExp, bExp2, bSquare big.Int
|
var bMul, bAdd, bSub, bDiv, bNeg, bLsh, bInv, bExp, bSquare big.Int
|
||||||
|
|
||||||
// e1 = mont(b1), e2 = mont(b2)
|
// e1 = mont(b1), e2 = mont(b2)
|
||||||
var e1, e2, eMul, eAdd, eSub, eDiv, eNeg, eLsh, eInv, eExp, eSquare, eMulAssign, eSubAssign, eAddAssign Element
|
var e1, e2, eMul, eAdd, eSub, eDiv, eNeg, eLsh, eInv, eExp, eSquare, eMulAssign, eSubAssign, eAddAssign Element
|
||||||
@@ -130,40 +106,12 @@ func TestELEMENTCorrectnessAgainstBigInt(t *testing.T) {
|
|||||||
cmpEandB(&eNeg, &bNeg, "Neg")
|
cmpEandB(&eNeg, &bNeg, "Neg")
|
||||||
cmpEandB(&eInv, &bInv, "Inv")
|
cmpEandB(&eInv, &bInv, "Inv")
|
||||||
cmpEandB(&eExp, &bExp, "Exp")
|
cmpEandB(&eExp, &bExp, "Exp")
|
||||||
|
|
||||||
cmpEandB(&eLsh, &bLsh, "Lsh")
|
cmpEandB(&eLsh, &bLsh, "Lsh")
|
||||||
|
|
||||||
// legendre symbol
|
|
||||||
if e1.Legendre() != big.Jacobi(b1, modulus) {
|
|
||||||
t.Fatal("legendre symbol computation failed")
|
|
||||||
}
|
|
||||||
if e2.Legendre() != big.Jacobi(b2, modulus) {
|
|
||||||
t.Fatal("legendre symbol computation failed")
|
|
||||||
}
|
|
||||||
|
|
||||||
// these are slow, killing circle ci
|
|
||||||
if n <= 5 {
|
|
||||||
// sqrt
|
|
||||||
var eSqrt, eExp2 Element
|
|
||||||
var bSqrt big.Int
|
|
||||||
bSqrt.ModSqrt(b1, modulus)
|
|
||||||
eSqrt.Sqrt(&e1)
|
|
||||||
cmpEandB(&eSqrt, &bSqrt, "Sqrt")
|
|
||||||
|
|
||||||
bits := b2.Bits()
|
|
||||||
exponent := make([]uint64, len(bits))
|
|
||||||
for k := 0; k < len(bits); k++ {
|
|
||||||
exponent[k] = uint64(bits[k])
|
|
||||||
}
|
|
||||||
eExp2.Exp(e1, exponent...)
|
|
||||||
bExp2.Exp(b1, b2, modulus)
|
|
||||||
cmpEandB(&eExp2, &bExp2, "Exp multi words")
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestELEMENTIsRandom(t *testing.T) {
|
func TestELEMENTIsRandom(t *testing.T) {
|
||||||
for i := 0; i < 50; i++ {
|
for i := 0; i < 1000; i++ {
|
||||||
var x, y Element
|
var x, y Element
|
||||||
x.SetRandom()
|
x.SetRandom()
|
||||||
y.SetRandom()
|
y.SetRandom()
|
||||||
@@ -177,6 +125,7 @@ func TestELEMENTIsRandom(t *testing.T) {
|
|||||||
// benchmarks
|
// benchmarks
|
||||||
// most benchmarks are rudimentary and should sample a large number of random inputs
|
// most benchmarks are rudimentary and should sample a large number of random inputs
|
||||||
// or be run multiple times to ensure it didn't measure the fastest path of the function
|
// or be run multiple times to ensure it didn't measure the fastest path of the function
|
||||||
|
// TODO: clean up and push benchmarking branch
|
||||||
|
|
||||||
var benchResElement Element
|
var benchResElement Element
|
||||||
|
|
||||||
@@ -270,15 +219,6 @@ func BenchmarkSquareELEMENT(b *testing.B) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func BenchmarkSqrtELEMENT(b *testing.B) {
|
|
||||||
var a Element
|
|
||||||
a.SetRandom()
|
|
||||||
b.ResetTimer()
|
|
||||||
for i := 0; i < b.N; i++ {
|
|
||||||
benchResElement.Sqrt(&a)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
func BenchmarkMulAssignELEMENT(b *testing.B) {
|
func BenchmarkMulAssignELEMENT(b *testing.B) {
|
||||||
x := Element{
|
x := Element{
|
||||||
1997599621687373223,
|
1997599621687373223,
|
||||||
@@ -292,183 +232,3 @@ func BenchmarkMulAssignELEMENT(b *testing.B) {
|
|||||||
benchResElement.MulAssign(&x)
|
benchResElement.MulAssign(&x)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func BenchmarkMulAssignASMELEMENT(b *testing.B) {
|
|
||||||
x := Element{
|
|
||||||
1997599621687373223,
|
|
||||||
6052339484930628067,
|
|
||||||
10108755138030829701,
|
|
||||||
150537098327114917,
|
|
||||||
}
|
|
||||||
benchResElement.SetOne()
|
|
||||||
b.ResetTimer()
|
|
||||||
for i := 0; i < b.N; i++ {
|
|
||||||
MulAssignElement(&benchResElement, &x)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
func TestELEMENTAsm(t *testing.T) {
|
|
||||||
// ensure ASM implementations matches the ones using math/bits
|
|
||||||
modulus, _ := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
|
|
||||||
for i := 0; i < 500; i++ {
|
|
||||||
// sample 2 random big int
|
|
||||||
b1, _ := rand.Int(rand.Reader, modulus)
|
|
||||||
b2, _ := rand.Int(rand.Reader, modulus)
|
|
||||||
|
|
||||||
// e1 = mont(b1), e2 = mont(b2)
|
|
||||||
var e1, e2, eTestMul, eMulAssign, eSquare, eTestSquare Element
|
|
||||||
e1.SetBigInt(b1)
|
|
||||||
e2.SetBigInt(b2)
|
|
||||||
|
|
||||||
eTestMul = e1
|
|
||||||
eTestMul.testMulAssign(&e2)
|
|
||||||
eMulAssign = e1
|
|
||||||
eMulAssign.MulAssign(&e2)
|
|
||||||
|
|
||||||
if !eTestMul.Equal(&eMulAssign) {
|
|
||||||
t.Fatal("inconsisntencies between MulAssign and testMulAssign --> check if MulAssign is calling ASM implementaiton on amd64")
|
|
||||||
}
|
|
||||||
|
|
||||||
// square
|
|
||||||
eSquare.Square(&e1)
|
|
||||||
eTestSquare.testSquare(&e1)
|
|
||||||
|
|
||||||
if !eTestSquare.Equal(&eSquare) {
|
|
||||||
t.Fatal("inconsisntencies between Square and testSquare --> check if Square is calling ASM implementaiton on amd64")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// this is here for consistency purposes, to ensure MulAssign on AMD64 using asm implementation gives consistent results
|
|
||||||
func (z *Element) testMulAssign(x *Element) *Element {
|
|
||||||
|
|
||||||
var t [4]uint64
|
|
||||||
var c [3]uint64
|
|
||||||
{
|
|
||||||
// round 0
|
|
||||||
v := z[0]
|
|
||||||
c[1], c[0] = bits.Mul64(v, x[0])
|
|
||||||
m := c[0] * 14042775128853446655
|
|
||||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
|
||||||
c[1], c[0] = madd1(v, x[1], c[1])
|
|
||||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
|
||||||
c[1], c[0] = madd1(v, x[2], c[1])
|
|
||||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
|
||||||
c[1], c[0] = madd1(v, x[3], c[1])
|
|
||||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 1
|
|
||||||
v := z[1]
|
|
||||||
c[1], c[0] = madd1(v, x[0], t[0])
|
|
||||||
m := c[0] * 14042775128853446655
|
|
||||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[1], c[1], t[1])
|
|
||||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[2], c[1], t[2])
|
|
||||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[3], c[1], t[3])
|
|
||||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 2
|
|
||||||
v := z[2]
|
|
||||||
c[1], c[0] = madd1(v, x[0], t[0])
|
|
||||||
m := c[0] * 14042775128853446655
|
|
||||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[1], c[1], t[1])
|
|
||||||
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[2], c[1], t[2])
|
|
||||||
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[3], c[1], t[3])
|
|
||||||
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 3
|
|
||||||
v := z[3]
|
|
||||||
c[1], c[0] = madd1(v, x[0], t[0])
|
|
||||||
m := c[0] * 14042775128853446655
|
|
||||||
c[2] = madd0(m, 4891460686036598785, c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[1], c[1], t[1])
|
|
||||||
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[2], c[1], t[2])
|
|
||||||
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
|
|
||||||
c[1], c[0] = madd2(v, x[3], c[1], t[3])
|
|
||||||
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
|
|
||||||
}
|
|
||||||
|
|
||||||
// if z > q --> z -= q
|
|
||||||
// note: this is NOT constant time
|
|
||||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
|
||||||
var b uint64
|
|
||||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
|
||||||
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
|
||||||
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
|
||||||
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
|
||||||
}
|
|
||||||
return z
|
|
||||||
}
|
|
||||||
|
|
||||||
// this is here for consistency purposes, to ensure Square on AMD64 using asm implementation gives consistent results
|
|
||||||
func (z *Element) testSquare(x *Element) *Element {
|
|
||||||
|
|
||||||
var p [4]uint64
|
|
||||||
|
|
||||||
var u, v uint64
|
|
||||||
{
|
|
||||||
// round 0
|
|
||||||
u, p[0] = bits.Mul64(x[0], x[0])
|
|
||||||
m := p[0] * 14042775128853446655
|
|
||||||
C := madd0(m, 4891460686036598785, p[0])
|
|
||||||
var t uint64
|
|
||||||
t, u, v = madd1sb(x[0], x[1], u)
|
|
||||||
C, p[0] = madd2(m, 2896914383306846353, v, C)
|
|
||||||
t, u, v = madd1s(x[0], x[2], t, u)
|
|
||||||
C, p[1] = madd2(m, 13281191951274694749, v, C)
|
|
||||||
_, u, v = madd1s(x[0], x[3], t, u)
|
|
||||||
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 1
|
|
||||||
m := p[0] * 14042775128853446655
|
|
||||||
C := madd0(m, 4891460686036598785, p[0])
|
|
||||||
u, v = madd1(x[1], x[1], p[1])
|
|
||||||
C, p[0] = madd2(m, 2896914383306846353, v, C)
|
|
||||||
var t uint64
|
|
||||||
t, u, v = madd2sb(x[1], x[2], p[2], u)
|
|
||||||
C, p[1] = madd2(m, 13281191951274694749, v, C)
|
|
||||||
_, u, v = madd2s(x[1], x[3], p[3], t, u)
|
|
||||||
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 2
|
|
||||||
m := p[0] * 14042775128853446655
|
|
||||||
C := madd0(m, 4891460686036598785, p[0])
|
|
||||||
C, p[0] = madd2(m, 2896914383306846353, p[1], C)
|
|
||||||
u, v = madd1(x[2], x[2], p[2])
|
|
||||||
C, p[1] = madd2(m, 13281191951274694749, v, C)
|
|
||||||
_, u, v = madd2sb(x[2], x[3], p[3], u)
|
|
||||||
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
|
|
||||||
}
|
|
||||||
{
|
|
||||||
// round 3
|
|
||||||
m := p[0] * 14042775128853446655
|
|
||||||
C := madd0(m, 4891460686036598785, p[0])
|
|
||||||
C, z[0] = madd2(m, 2896914383306846353, p[1], C)
|
|
||||||
C, z[1] = madd2(m, 13281191951274694749, p[2], C)
|
|
||||||
u, v = madd1(x[3], x[3], p[3])
|
|
||||||
z[3], z[2] = madd3(m, 3486998266802970665, v, C, u)
|
|
||||||
}
|
|
||||||
|
|
||||||
// if z > q --> z -= q
|
|
||||||
// note: this is NOT constant time
|
|
||||||
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
|
|
||||||
var b uint64
|
|
||||||
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
|
|
||||||
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
|
|
||||||
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
|
|
||||||
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
|
|
||||||
}
|
|
||||||
return z
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|||||||
@@ -1,5 +1,13 @@
|
|||||||
package ff
|
package ff
|
||||||
|
|
||||||
|
import "math/big"
|
||||||
|
|
||||||
func NewElement() *Element {
|
func NewElement() *Element {
|
||||||
return &Element{}
|
return &Element{}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (e *Element) BigInt() *big.Int {
|
||||||
|
b := big.NewInt(0)
|
||||||
|
e.ToBigIntRegular(b)
|
||||||
|
return b
|
||||||
|
}
|
||||||
|
|||||||
1
go.mod
1
go.mod
@@ -7,5 +7,4 @@ require (
|
|||||||
github.com/ethereum/go-ethereum v1.8.27
|
github.com/ethereum/go-ethereum v1.8.27
|
||||||
github.com/stretchr/testify v1.3.0
|
github.com/stretchr/testify v1.3.0
|
||||||
golang.org/x/crypto v0.0.0-20190621222207-cc06ce4a13d4
|
golang.org/x/crypto v0.0.0-20190621222207-cc06ce4a13d4
|
||||||
golang.org/x/sys v0.0.0-20190412213103-97732733099d
|
|
||||||
)
|
)
|
||||||
|
|||||||
Reference in New Issue
Block a user