mirror of
https://github.com/arnaucube/go-iden3-crypto.git
synced 2026-02-07 11:36:41 +01:00
Compare commits
6 Commits
feature/po
...
feature/bb
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8a260d66d3 | ||
|
|
ee467c6215 | ||
|
|
4750e9c83c | ||
|
|
16a8a18a6d | ||
|
|
e8be761ec7 | ||
|
|
5d88f7c4cd |
@@ -5,14 +5,15 @@ import (
|
||||
"math/big"
|
||||
|
||||
"github.com/iden3/go-iden3-crypto/constants"
|
||||
"github.com/iden3/go-iden3-crypto/ff"
|
||||
"github.com/iden3/go-iden3-crypto/utils"
|
||||
)
|
||||
|
||||
// A is one of the babyjub constants.
|
||||
var A *big.Int
|
||||
var A *ff.Element
|
||||
|
||||
// D is one of the babyjub constants.
|
||||
var D *big.Int
|
||||
var D *ff.Element
|
||||
|
||||
// Order of the babyjub curve.
|
||||
var Order *big.Int
|
||||
@@ -27,29 +28,52 @@ var B8 *Point
|
||||
|
||||
// init initializes global numbers and the subgroup base.
|
||||
func init() {
|
||||
A = utils.NewIntFromString("168700")
|
||||
D = utils.NewIntFromString("168696")
|
||||
A = ff.NewElement().SetString("168700")
|
||||
D = ff.NewElement().SetString("168696")
|
||||
|
||||
Order = utils.NewIntFromString(
|
||||
"21888242871839275222246405745257275088614511777268538073601725287587578984328")
|
||||
SubOrder = new(big.Int).Rsh(Order, 3)
|
||||
|
||||
B8 = NewPoint()
|
||||
B8.X = utils.NewIntFromString(
|
||||
B8.X = ff.NewElement().SetString(
|
||||
"5299619240641551281634865583518297030282874472190772894086521144482721001553")
|
||||
B8.Y = utils.NewIntFromString(
|
||||
B8.Y = ff.NewElement().SetString(
|
||||
"16950150798460657717958625567821834550301663161624707787222815936182638968203")
|
||||
}
|
||||
|
||||
// Point represents a point of the babyjub curve.
|
||||
type Point struct {
|
||||
// PointBI represents a point of the babyjub curve.
|
||||
type PointBI struct {
|
||||
X *big.Int
|
||||
Y *big.Int
|
||||
}
|
||||
|
||||
// NewPoint creates a new Point.
|
||||
type Point struct {
|
||||
X *ff.Element
|
||||
Y *ff.Element
|
||||
}
|
||||
|
||||
func PointBIToPoint(p *PointBI) *Point {
|
||||
return &Point{
|
||||
X: ff.NewElement().SetBigInt(p.X),
|
||||
Y: ff.NewElement().SetBigInt(p.Y),
|
||||
}
|
||||
}
|
||||
|
||||
func PointToPointBI(p *Point) *PointBI {
|
||||
return &PointBI{
|
||||
X: p.X.BigInt(),
|
||||
Y: p.Y.BigInt(),
|
||||
}
|
||||
}
|
||||
|
||||
// NewPoint creates a new PointBI.
|
||||
func NewPointBI() *PointBI {
|
||||
return &PointBI{X: big.NewInt(0), Y: big.NewInt(1)}
|
||||
}
|
||||
|
||||
func NewPoint() *Point {
|
||||
return &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
||||
return &Point{X: ff.NewElement().SetZero(), Y: ff.NewElement().SetOne()}
|
||||
}
|
||||
|
||||
// Set copies a Point c into the Point p
|
||||
@@ -59,44 +83,45 @@ func (p *Point) Set(c *Point) *Point {
|
||||
return p
|
||||
}
|
||||
|
||||
func (p *Point) Equal(q *Point) bool {
|
||||
// return p.X.Cmp(q.X) == 0 && p.Y.Cmp(q.Y) == 0
|
||||
return p.X.Equal(q.X) && p.Y.Equal(q.Y)
|
||||
}
|
||||
|
||||
// Add adds Point a and b into res
|
||||
func (res *Point) Add(a *Point, b *Point) *Point {
|
||||
// x = (a.x * b.y + b.x * a.y) * (1 + D * a.x * b.x * a.y * b.y)^-1 mod q
|
||||
x1a := new(big.Int).Mul(a.X, b.Y)
|
||||
x1b := new(big.Int).Mul(b.X, a.Y)
|
||||
x1a := ff.NewElement().Mul(a.X, b.Y)
|
||||
x1b := ff.NewElement().Mul(b.X, a.Y)
|
||||
x1a.Add(x1a, x1b) // x1a = a.x * b.y + b.x * a.y
|
||||
|
||||
x2 := new(big.Int).Set(D)
|
||||
x2 := ff.NewElement().Set(D)
|
||||
x2.Mul(x2, a.X)
|
||||
x2.Mul(x2, b.X)
|
||||
x2.Mul(x2, a.Y)
|
||||
x2.Mul(x2, b.Y)
|
||||
x2.Add(constants.One, x2)
|
||||
x2.Mod(x2, constants.Q)
|
||||
x2.ModInverse(x2, constants.Q) // x2 = (1 + D * a.x * b.x * a.y * b.y)^-1
|
||||
x2.Add(ff.NewElement().SetOne(), x2)
|
||||
x2.Inverse(x2) // x2 = (1 + D * a.x * b.x * a.y * b.y)^-1
|
||||
|
||||
// y = (a.y * b.y - A * a.x * b.x) * (1 - D * a.x * b.x * a.y * b.y)^-1 mod q
|
||||
y1a := new(big.Int).Mul(a.Y, b.Y)
|
||||
y1b := new(big.Int).Set(A)
|
||||
y1a := ff.NewElement().Mul(a.Y, b.Y)
|
||||
y1b := ff.NewElement().Set(A)
|
||||
y1b.Mul(y1b, a.X)
|
||||
y1b.Mul(y1b, b.X)
|
||||
|
||||
y1a.Sub(y1a, y1b) // y1a = a.y * b.y - A * a.x * b.x
|
||||
|
||||
y2 := new(big.Int).Set(D)
|
||||
y2 := ff.NewElement().Set(D)
|
||||
y2.Mul(y2, a.X)
|
||||
y2.Mul(y2, b.X)
|
||||
y2.Mul(y2, a.Y)
|
||||
y2.Mul(y2, b.Y)
|
||||
y2.Sub(constants.One, y2)
|
||||
y2.Mod(y2, constants.Q)
|
||||
y2.ModInverse(y2, constants.Q) // y2 = (1 - D * a.x * b.x * a.y * b.y)^-1
|
||||
y2.Sub(ff.NewElement().SetOne(), y2)
|
||||
y2.Inverse(y2) // y2 = (1 - D * a.x * b.x * a.y * b.y)^-1
|
||||
|
||||
res.X = x1a.Mul(x1a, x2)
|
||||
res.X = res.X.Mod(res.X, constants.Q)
|
||||
|
||||
res.Y = y1a.Mul(y1a, y2)
|
||||
res.Y = res.Y.Mod(res.Y, constants.Q)
|
||||
|
||||
return res
|
||||
}
|
||||
@@ -104,8 +129,8 @@ func (res *Point) Add(a *Point, b *Point) *Point {
|
||||
// Mul multiplies the Point p by the scalar s and stores the result in res,
|
||||
// which is also returned.
|
||||
func (res *Point) Mul(s *big.Int, p *Point) *Point {
|
||||
res.X = big.NewInt(0)
|
||||
res.Y = big.NewInt(1)
|
||||
res.X = ff.NewElement().SetZero()
|
||||
res.Y = ff.NewElement().SetOne()
|
||||
exp := NewPoint().Set(p)
|
||||
|
||||
for i := 0; i < s.BitLen(); i++ {
|
||||
@@ -120,25 +145,21 @@ func (res *Point) Mul(s *big.Int, p *Point) *Point {
|
||||
|
||||
// InCurve returns true when the Point p is in the babyjub curve.
|
||||
func (p *Point) InCurve() bool {
|
||||
x2 := new(big.Int).Set(p.X)
|
||||
x2 := ff.NewElement().Set(p.X)
|
||||
x2.Mul(x2, x2)
|
||||
x2.Mod(x2, constants.Q)
|
||||
|
||||
y2 := new(big.Int).Set(p.Y)
|
||||
y2 := ff.NewElement().Set(p.Y)
|
||||
y2.Mul(y2, y2)
|
||||
y2.Mod(y2, constants.Q)
|
||||
|
||||
a := new(big.Int).Mul(A, x2)
|
||||
a := ff.NewElement().Mul(A, x2)
|
||||
a.Add(a, y2)
|
||||
a.Mod(a, constants.Q)
|
||||
|
||||
b := new(big.Int).Set(D)
|
||||
b := ff.NewElement().Set(D)
|
||||
b.Mul(b, x2)
|
||||
b.Mul(b, y2)
|
||||
b.Add(constants.One, b)
|
||||
b.Mod(b, constants.Q)
|
||||
b.Add(ff.NewElement().SetOne(), b)
|
||||
|
||||
return a.Cmp(b) == 0
|
||||
return a.Equal(b)
|
||||
}
|
||||
|
||||
// InSubGroup returns true when the Point p is in the subgroup of the babyjub
|
||||
@@ -148,7 +169,7 @@ func (p *Point) InSubGroup() bool {
|
||||
return false
|
||||
}
|
||||
res := NewPoint().Mul(SubOrder, p)
|
||||
return (res.X.Cmp(constants.Zero) == 0) && (res.Y.Cmp(constants.One) == 0)
|
||||
return res.X.Equal(ff.NewElement().SetZero()) && res.Y.Equal(ff.NewElement().SetOne())
|
||||
}
|
||||
|
||||
// PointCoordSign returns the sign of the curve point coordinate. It returns
|
||||
@@ -171,8 +192,9 @@ func PackPoint(ay *big.Int, sign bool) [32]byte {
|
||||
// Compress the point into a 32 byte array that contains the y coordinate in
|
||||
// little endian and the sign of the x coordinate.
|
||||
func (p *Point) Compress() [32]byte {
|
||||
sign := PointCoordSign(p.X)
|
||||
return PackPoint(p.Y, sign)
|
||||
pBI := PointToPointBI(p)
|
||||
sign := PointCoordSign(pBI.X)
|
||||
return PackPoint(pBI.Y, sign)
|
||||
}
|
||||
|
||||
// Decompress a compressed Point into p, and also returns the decompressed
|
||||
@@ -183,34 +205,37 @@ func (p *Point) Decompress(leBuf [32]byte) (*Point, error) {
|
||||
sign = true
|
||||
leBuf[31] = leBuf[31] & 0x7F
|
||||
}
|
||||
utils.SetBigIntFromLEBytes(p.Y, leBuf[:])
|
||||
if p.Y.Cmp(constants.Q) >= 0 {
|
||||
y := big.NewInt(0)
|
||||
utils.SetBigIntFromLEBytes(y, leBuf[:])
|
||||
if y.Cmp(constants.Q) >= 0 {
|
||||
return nil, fmt.Errorf("p.y >= Q")
|
||||
}
|
||||
p.Y = ff.NewElement().SetBigInt(y)
|
||||
|
||||
y2 := new(big.Int).Mul(p.Y, p.Y)
|
||||
y2.Mod(y2, constants.Q)
|
||||
xa := big.NewInt(1)
|
||||
y2 := ff.NewElement().Mul(p.Y, p.Y)
|
||||
xa := ff.NewElement().SetOne()
|
||||
xa.Sub(xa, y2) // xa == 1 - y^2
|
||||
|
||||
xb := new(big.Int).Mul(D, y2)
|
||||
xb.Mod(xb, constants.Q)
|
||||
xb := ff.NewElement().Mul(D, y2)
|
||||
xb.Sub(A, xb) // xb = A - d * y^2
|
||||
|
||||
if xb.Cmp(big.NewInt(0)) == 0 {
|
||||
if xb.Equal(ff.NewElement().SetZero()) {
|
||||
return nil, fmt.Errorf("division by 0")
|
||||
}
|
||||
xb.ModInverse(xb, constants.Q)
|
||||
xb.Inverse(xb)
|
||||
p.X.Mul(xa, xb) // xa / xb
|
||||
p.X.Mod(p.X, constants.Q)
|
||||
noSqrt := p.X.ModSqrt(p.X, constants.Q)
|
||||
|
||||
q := PointToPointBI(p)
|
||||
noSqrt := q.X.ModSqrt(q.X, constants.Q)
|
||||
if noSqrt == nil {
|
||||
return nil, fmt.Errorf("x is not a square mod q")
|
||||
}
|
||||
if (sign && !PointCoordSign(p.X)) || (!sign && PointCoordSign(p.X)) {
|
||||
p.X.Mul(p.X, constants.MinusOne)
|
||||
if (sign && !PointCoordSign(q.X)) || (!sign && PointCoordSign(q.X)) {
|
||||
q.X.Mul(q.X, constants.MinusOne)
|
||||
}
|
||||
p.X.Mod(p.X, constants.Q)
|
||||
q.X.Mod(q.X, constants.Q)
|
||||
|
||||
p = PointBIToPoint(q)
|
||||
|
||||
return p, nil
|
||||
}
|
||||
|
||||
@@ -7,13 +7,21 @@ import (
|
||||
"testing"
|
||||
|
||||
"github.com/iden3/go-iden3-crypto/constants"
|
||||
"github.com/iden3/go-iden3-crypto/ff"
|
||||
"github.com/iden3/go-iden3-crypto/utils"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func zero() *ff.Element {
|
||||
return ff.NewElement().SetZero()
|
||||
}
|
||||
func one() *ff.Element {
|
||||
return ff.NewElement().SetOne()
|
||||
}
|
||||
|
||||
func TestAdd1(t *testing.T) {
|
||||
a := &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
||||
b := &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
||||
a := &Point{X: zero(), Y: one()}
|
||||
b := &Point{X: zero(), Y: one()}
|
||||
|
||||
c := NewPoint().Add(a, b)
|
||||
// fmt.Printf("%v = 2 * %v", *c, *a)
|
||||
@@ -22,15 +30,15 @@ func TestAdd1(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestAdd2(t *testing.T) {
|
||||
aX := utils.NewIntFromString(
|
||||
aX := ff.NewElement().SetString(
|
||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||
aY := utils.NewIntFromString(
|
||||
aY := ff.NewElement().SetString(
|
||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||
a := &Point{X: aX, Y: aY}
|
||||
|
||||
bX := utils.NewIntFromString(
|
||||
bX := ff.NewElement().SetString(
|
||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||
bY := utils.NewIntFromString(
|
||||
bY := ff.NewElement().SetString(
|
||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||
b := &Point{X: bX, Y: bY}
|
||||
|
||||
@@ -45,15 +53,15 @@ func TestAdd2(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestAdd3(t *testing.T) {
|
||||
aX := utils.NewIntFromString(
|
||||
aX := ff.NewElement().SetString(
|
||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||
aY := utils.NewIntFromString(
|
||||
aY := ff.NewElement().SetString(
|
||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||
a := &Point{X: aX, Y: aY}
|
||||
|
||||
bX := utils.NewIntFromString(
|
||||
bX := ff.NewElement().SetString(
|
||||
"16540640123574156134436876038791482806971768689494387082833631921987005038935")
|
||||
bY := utils.NewIntFromString(
|
||||
bY := ff.NewElement().SetString(
|
||||
"20819045374670962167435360035096875258406992893633759881276124905556507972311")
|
||||
b := &Point{X: bX, Y: bY}
|
||||
|
||||
@@ -68,15 +76,15 @@ func TestAdd3(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestAdd4(t *testing.T) {
|
||||
aX := utils.NewIntFromString(
|
||||
aX := ff.NewElement().SetString(
|
||||
"0")
|
||||
aY := utils.NewIntFromString(
|
||||
aY := ff.NewElement().SetString(
|
||||
"1")
|
||||
a := &Point{X: aX, Y: aY}
|
||||
|
||||
bX := utils.NewIntFromString(
|
||||
bX := ff.NewElement().SetString(
|
||||
"16540640123574156134436876038791482806971768689494387082833631921987005038935")
|
||||
bY := utils.NewIntFromString(
|
||||
bY := ff.NewElement().SetString(
|
||||
"20819045374670962167435360035096875258406992893633759881276124905556507972311")
|
||||
b := &Point{X: bX, Y: bY}
|
||||
|
||||
@@ -91,19 +99,19 @@ func TestAdd4(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestInCurve1(t *testing.T) {
|
||||
p := &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
||||
p := &Point{X: zero(), Y: one()}
|
||||
assert.Equal(t, true, p.InCurve())
|
||||
}
|
||||
|
||||
func TestInCurve2(t *testing.T) {
|
||||
p := &Point{X: big.NewInt(1), Y: big.NewInt(0)}
|
||||
p := &Point{X: one(), Y: zero()}
|
||||
assert.Equal(t, false, p.InCurve())
|
||||
}
|
||||
|
||||
func TestMul0(t *testing.T) {
|
||||
x := utils.NewIntFromString(
|
||||
x := ff.NewElement().SetString(
|
||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||
y := utils.NewIntFromString(
|
||||
y := ff.NewElement().SetString(
|
||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||
p := &Point{X: x, Y: y}
|
||||
s := utils.NewIntFromString("3")
|
||||
@@ -123,9 +131,9 @@ func TestMul0(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestMul1(t *testing.T) {
|
||||
x := utils.NewIntFromString(
|
||||
x := ff.NewElement().SetString(
|
||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||
y := utils.NewIntFromString(
|
||||
y := ff.NewElement().SetString(
|
||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||
p := &Point{X: x, Y: y}
|
||||
s := utils.NewIntFromString(
|
||||
@@ -140,9 +148,9 @@ func TestMul1(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestMul2(t *testing.T) {
|
||||
x := utils.NewIntFromString(
|
||||
x := ff.NewElement().SetString(
|
||||
"6890855772600357754907169075114257697580319025794532037257385534741338397365")
|
||||
y := utils.NewIntFromString(
|
||||
y := ff.NewElement().SetString(
|
||||
"4338620300185947561074059802482547481416142213883829469920100239455078257889")
|
||||
p := &Point{X: x, Y: y}
|
||||
s := utils.NewIntFromString(
|
||||
@@ -157,45 +165,45 @@ func TestMul2(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestInCurve3(t *testing.T) {
|
||||
x := utils.NewIntFromString(
|
||||
x := ff.NewElement().SetString(
|
||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||
y := utils.NewIntFromString(
|
||||
y := ff.NewElement().SetString(
|
||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||
p := &Point{X: x, Y: y}
|
||||
assert.Equal(t, true, p.InCurve())
|
||||
}
|
||||
|
||||
func TestInCurve4(t *testing.T) {
|
||||
x := utils.NewIntFromString(
|
||||
x := ff.NewElement().SetString(
|
||||
"6890855772600357754907169075114257697580319025794532037257385534741338397365")
|
||||
y := utils.NewIntFromString(
|
||||
y := ff.NewElement().SetString(
|
||||
"4338620300185947561074059802482547481416142213883829469920100239455078257889")
|
||||
p := &Point{X: x, Y: y}
|
||||
assert.Equal(t, true, p.InCurve())
|
||||
}
|
||||
|
||||
func TestInSubGroup1(t *testing.T) {
|
||||
x := utils.NewIntFromString(
|
||||
x := ff.NewElement().SetString(
|
||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||
y := utils.NewIntFromString(
|
||||
y := ff.NewElement().SetString(
|
||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||
p := &Point{X: x, Y: y}
|
||||
assert.Equal(t, true, p.InSubGroup())
|
||||
}
|
||||
|
||||
func TestInSubGroup2(t *testing.T) {
|
||||
x := utils.NewIntFromString(
|
||||
x := ff.NewElement().SetString(
|
||||
"6890855772600357754907169075114257697580319025794532037257385534741338397365")
|
||||
y := utils.NewIntFromString(
|
||||
y := ff.NewElement().SetString(
|
||||
"4338620300185947561074059802482547481416142213883829469920100239455078257889")
|
||||
p := &Point{X: x, Y: y}
|
||||
assert.Equal(t, true, p.InSubGroup())
|
||||
}
|
||||
|
||||
func TestCompressDecompress1(t *testing.T) {
|
||||
x := utils.NewIntFromString(
|
||||
x := ff.NewElement().SetString(
|
||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||
y := utils.NewIntFromString(
|
||||
y := ff.NewElement().SetString(
|
||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||
p := &Point{X: x, Y: y}
|
||||
|
||||
@@ -209,9 +217,9 @@ func TestCompressDecompress1(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestCompressDecompress2(t *testing.T) {
|
||||
x := utils.NewIntFromString(
|
||||
x := ff.NewElement().SetString(
|
||||
"6890855772600357754907169075114257697580319025794532037257385534741338397365")
|
||||
y := utils.NewIntFromString(
|
||||
y := ff.NewElement().SetString(
|
||||
"4338620300185947561074059802482547481416142213883829469920100239455078257889")
|
||||
p := &Point{X: x, Y: y}
|
||||
|
||||
@@ -230,7 +238,8 @@ func TestCompressDecompressRnd(t *testing.T) {
|
||||
buf := p1.Compress()
|
||||
p2, err := NewPoint().Decompress(buf)
|
||||
assert.Equal(t, nil, err)
|
||||
assert.Equal(t, p1, p2)
|
||||
// assert.Equal(t, p1, p2)
|
||||
assert.True(t, p1.Equal(p2))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -241,15 +250,15 @@ func BenchmarkBabyjub(b *testing.B) {
|
||||
|
||||
var badpoints [n]*Point
|
||||
for i := 0; i < n; i++ {
|
||||
x := new(big.Int).Rand(rnd, constants.Q)
|
||||
y := new(big.Int).Rand(rnd, constants.Q)
|
||||
x := ff.NewElement().SetRandom()
|
||||
y := ff.NewElement().SetRandom()
|
||||
badpoints[i] = &Point{X: x, Y: y}
|
||||
}
|
||||
|
||||
var points [n]*Point
|
||||
baseX := utils.NewIntFromString(
|
||||
baseX := ff.NewElement().SetString(
|
||||
"17777552123799933955779906779655732241715742912184938656739573121738514868268")
|
||||
baseY := utils.NewIntFromString(
|
||||
baseY := ff.NewElement().SetString(
|
||||
"2626589144620713026669568689430873010625803728049924121243784502389097019475")
|
||||
base := &Point{X: baseX, Y: baseY}
|
||||
for i := 0; i < n; i++ {
|
||||
@@ -263,8 +272,8 @@ func BenchmarkBabyjub(b *testing.B) {
|
||||
}
|
||||
|
||||
b.Run("AddConst", func(b *testing.B) {
|
||||
p0 := &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
||||
p1 := &Point{X: big.NewInt(0), Y: big.NewInt(1)}
|
||||
p0 := &Point{X: zero(), Y: one()}
|
||||
p1 := &Point{X: zero(), Y: one()}
|
||||
|
||||
p2 := NewPoint()
|
||||
for i := 0; i < b.N; i++ {
|
||||
|
||||
@@ -180,7 +180,7 @@ func (k *PrivateKey) SignMimc7(msg *big.Int) *Signature {
|
||||
r.Mod(r, SubOrder)
|
||||
R8 := NewPoint().Mul(r, B8) // R8 = r * 8 * B
|
||||
A := k.Public().Point()
|
||||
hmInput := []*big.Int{R8.X, R8.Y, A.X, A.Y, msg}
|
||||
hmInput := []*big.Int{R8.X.BigInt(), R8.Y.BigInt(), A.X.BigInt(), A.Y.BigInt(), msg}
|
||||
hm, err := mimc7.Hash(hmInput, nil) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
@@ -196,7 +196,7 @@ func (k *PrivateKey) SignMimc7(msg *big.Int) *Signature {
|
||||
// VerifyMimc7 verifies the signature of a message encoded as a big.Int in Zq
|
||||
// using blake-512 hash for buffer hashing and mimc7 for big.Int hashing.
|
||||
func (p *PublicKey) VerifyMimc7(msg *big.Int, sig *Signature) bool {
|
||||
hmInput := []*big.Int{sig.R8.X, sig.R8.Y, p.X, p.Y, msg}
|
||||
hmInput := []*big.Int{sig.R8.X.BigInt(), sig.R8.Y.BigInt(), p.X.BigInt(), p.Y.BigInt(), msg}
|
||||
hm, err := mimc7.Hash(hmInput, nil) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
@@ -207,7 +207,7 @@ func (p *PublicKey) VerifyMimc7(msg *big.Int, sig *Signature) bool {
|
||||
r1.Mul(r1, hm)
|
||||
right := NewPoint().Mul(r1, p.Point())
|
||||
right.Add(sig.R8, right) // right = 8 * R + 8 * hm * A
|
||||
return (left.X.Cmp(right.X) == 0) && (left.Y.Cmp(right.Y) == 0)
|
||||
return left.X.Equal(right.X) && left.Y.Equal(right.Y)
|
||||
}
|
||||
|
||||
// SignPoseidon signs a message encoded as a big.Int in Zq using blake-512 hash
|
||||
@@ -223,7 +223,7 @@ func (k *PrivateKey) SignPoseidon(msg *big.Int) *Signature {
|
||||
R8 := NewPoint().Mul(r, B8) // R8 = r * 8 * B
|
||||
A := k.Public().Point()
|
||||
|
||||
hmInput := [poseidon.T]*big.Int{R8.X, R8.Y, A.X, A.Y, msg, big.NewInt(int64(0))}
|
||||
hmInput := [poseidon.T]*big.Int{R8.X.BigInt(), R8.Y.BigInt(), A.X.BigInt(), A.Y.BigInt(), msg, big.NewInt(int64(0))}
|
||||
hm, err := poseidon.PoseidonHash(hmInput) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
@@ -240,7 +240,7 @@ func (k *PrivateKey) SignPoseidon(msg *big.Int) *Signature {
|
||||
// VerifyPoseidon verifies the signature of a message encoded as a big.Int in Zq
|
||||
// using blake-512 hash for buffer hashing and Poseidon for big.Int hashing.
|
||||
func (p *PublicKey) VerifyPoseidon(msg *big.Int, sig *Signature) bool {
|
||||
hmInput := [poseidon.T]*big.Int{sig.R8.X, sig.R8.Y, p.X, p.Y, msg, big.NewInt(int64(0))}
|
||||
hmInput := [poseidon.T]*big.Int{sig.R8.X.BigInt(), sig.R8.Y.BigInt(), p.X.BigInt(), p.Y.BigInt(), msg, big.NewInt(int64(0))}
|
||||
hm, err := poseidon.PoseidonHash(hmInput) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
@@ -251,5 +251,5 @@ func (p *PublicKey) VerifyPoseidon(msg *big.Int, sig *Signature) bool {
|
||||
r1.Mul(r1, hm)
|
||||
right := NewPoint().Mul(r1, p.Point())
|
||||
right.Add(sig.R8, right) // right = 8 * R + 8 * hm * A
|
||||
return (left.X.Cmp(right.X) == 0) && (left.Y.Cmp(right.Y) == 0)
|
||||
return left.X.Equal(right.X) && left.Y.Equal(right.Y)
|
||||
}
|
||||
|
||||
@@ -31,8 +31,8 @@ func TestPublicKey(t *testing.T) {
|
||||
hex.Decode(k[:], []byte{byte(i)})
|
||||
}
|
||||
pk := k.Public()
|
||||
assert.True(t, pk.X.Cmp(constants.Q) == -1)
|
||||
assert.True(t, pk.Y.Cmp(constants.Q) == -1)
|
||||
assert.True(t, pk.X.BigInt().Cmp(constants.Q) == -1)
|
||||
assert.True(t, pk.Y.BigInt().Cmp(constants.Q) == -1)
|
||||
}
|
||||
|
||||
func TestSignVerifyMimc7(t *testing.T) {
|
||||
|
||||
@@ -1,5 +1,13 @@
|
||||
package ff
|
||||
|
||||
import "math/big"
|
||||
|
||||
func NewElement() *Element {
|
||||
return &Element{}
|
||||
}
|
||||
|
||||
func (e *Element) BigInt() *big.Int {
|
||||
b := big.NewInt(0)
|
||||
e.ToBigIntRegular(b)
|
||||
return b
|
||||
}
|
||||
|
||||
152
field/field.go
152
field/field.go
@@ -1,152 +0,0 @@
|
||||
// code originally taken from https://github.com/arnaucube/go-snark (https://github.com/arnaucube/go-snark/blob/master/fields/fq.go), pasted here to ensure compatibility among future changes
|
||||
|
||||
package field
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/rand"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// Fq is the Z field over modulus Q
|
||||
type Fq struct {
|
||||
Q *big.Int // Q
|
||||
}
|
||||
|
||||
// NewFq generates a new Fq
|
||||
func NewFq(q *big.Int) Fq {
|
||||
return Fq{
|
||||
q,
|
||||
}
|
||||
}
|
||||
|
||||
// Zero returns a Zero value on the Fq
|
||||
func (fq Fq) Zero() *big.Int {
|
||||
return big.NewInt(int64(0))
|
||||
}
|
||||
|
||||
// One returns a One value on the Fq
|
||||
func (fq Fq) One() *big.Int {
|
||||
return big.NewInt(int64(1))
|
||||
}
|
||||
|
||||
// Add performs an addition on the Fq
|
||||
func (fq Fq) Add(a, b *big.Int) *big.Int {
|
||||
r := new(big.Int).Add(a, b)
|
||||
return new(big.Int).Mod(r, fq.Q)
|
||||
}
|
||||
|
||||
// Double performs a doubling on the Fq
|
||||
func (fq Fq) Double(a *big.Int) *big.Int {
|
||||
r := new(big.Int).Add(a, a)
|
||||
return new(big.Int).Mod(r, fq.Q)
|
||||
}
|
||||
|
||||
// Sub performs a subtraction on the Fq
|
||||
func (fq Fq) Sub(a, b *big.Int) *big.Int {
|
||||
r := new(big.Int).Sub(a, b)
|
||||
return new(big.Int).Mod(r, fq.Q)
|
||||
}
|
||||
|
||||
// Neg performs a negation on the Fq
|
||||
func (fq Fq) Neg(a *big.Int) *big.Int {
|
||||
m := new(big.Int).Neg(a)
|
||||
return new(big.Int).Mod(m, fq.Q)
|
||||
}
|
||||
|
||||
// Mul performs a multiplication on the Fq
|
||||
func (fq Fq) Mul(a, b *big.Int) *big.Int {
|
||||
m := new(big.Int).Mul(a, b)
|
||||
return new(big.Int).Mod(m, fq.Q)
|
||||
}
|
||||
|
||||
func (fq Fq) MulScalar(base, e *big.Int) *big.Int {
|
||||
return fq.Mul(base, e)
|
||||
}
|
||||
|
||||
// Inverse returns the inverse on the Fq
|
||||
func (fq Fq) Inverse(a *big.Int) *big.Int {
|
||||
return new(big.Int).ModInverse(a, fq.Q)
|
||||
}
|
||||
|
||||
// Div performs the division over the finite field
|
||||
func (fq Fq) Div(a, b *big.Int) *big.Int {
|
||||
d := fq.Mul(a, fq.Inverse(b))
|
||||
return new(big.Int).Mod(d, fq.Q)
|
||||
}
|
||||
|
||||
// Square performs a square operation on the Fq
|
||||
func (fq Fq) Square(a *big.Int) *big.Int {
|
||||
m := new(big.Int).Mul(a, a)
|
||||
return new(big.Int).Mod(m, fq.Q)
|
||||
}
|
||||
|
||||
// Exp performs the exponential over Fq
|
||||
func (fq Fq) Exp(base *big.Int, e *big.Int) *big.Int {
|
||||
res := fq.One()
|
||||
rem := fq.Copy(e)
|
||||
exp := base
|
||||
|
||||
for !bytes.Equal(rem.Bytes(), big.NewInt(int64(0)).Bytes()) {
|
||||
if BigIsOdd(rem) {
|
||||
res = fq.Mul(res, exp)
|
||||
}
|
||||
exp = fq.Square(exp)
|
||||
rem = new(big.Int).Rsh(rem, 1)
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
func (fq Fq) Rand() (*big.Int, error) {
|
||||
|
||||
maxbits := fq.Q.BitLen()
|
||||
b := make([]byte, (maxbits/8)-1)
|
||||
_, err := rand.Read(b)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
r := new(big.Int).SetBytes(b)
|
||||
rq := new(big.Int).Mod(r, fq.Q)
|
||||
|
||||
// r over q, nil
|
||||
return rq, nil
|
||||
}
|
||||
|
||||
func (fq Fq) IsZero(a *big.Int) bool {
|
||||
return bytes.Equal(a.Bytes(), fq.Zero().Bytes())
|
||||
}
|
||||
|
||||
func (fq Fq) Copy(a *big.Int) *big.Int {
|
||||
return new(big.Int).SetBytes(a.Bytes())
|
||||
}
|
||||
|
||||
func (fq Fq) Affine(a *big.Int) *big.Int {
|
||||
nq := fq.Neg(fq.Q)
|
||||
|
||||
aux := a
|
||||
if aux.Cmp(big.NewInt(int64(0))) == -1 { // negative value
|
||||
if aux.Cmp(nq) != 1 { // aux less or equal nq
|
||||
aux = new(big.Int).Mod(aux, fq.Q)
|
||||
}
|
||||
if aux.Cmp(big.NewInt(int64(0))) == -1 { // negative value
|
||||
aux = new(big.Int).Add(aux, fq.Q)
|
||||
}
|
||||
} else {
|
||||
if aux.Cmp(fq.Q) != -1 { // aux greater or equal nq
|
||||
aux = new(big.Int).Mod(aux, fq.Q)
|
||||
}
|
||||
}
|
||||
return aux
|
||||
}
|
||||
|
||||
func (fq Fq) Equal(a, b *big.Int) bool {
|
||||
aAff := fq.Affine(a)
|
||||
bAff := fq.Affine(b)
|
||||
return bytes.Equal(aAff.Bytes(), bAff.Bytes())
|
||||
}
|
||||
|
||||
func BigIsOdd(n *big.Int) bool {
|
||||
one := big.NewInt(int64(1))
|
||||
and := new(big.Int).And(n, one)
|
||||
return bytes.Equal(and.Bytes(), big.NewInt(int64(1)).Bytes())
|
||||
}
|
||||
@@ -1,39 +0,0 @@
|
||||
// code originally taken from https://github.com/arnaucube/go-snark (https://github.com/arnaucube/go-snark/blob/master/fields/fq.go), pasted here to ensure compatibility among future changes
|
||||
|
||||
package field
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func iToBig(a int) *big.Int {
|
||||
return big.NewInt(int64(a))
|
||||
}
|
||||
|
||||
func TestFq1(t *testing.T) {
|
||||
fq1 := NewFq(iToBig(7))
|
||||
|
||||
res := fq1.Add(iToBig(4), iToBig(4))
|
||||
assert.Equal(t, iToBig(1), fq1.Affine(res))
|
||||
|
||||
res = fq1.Double(iToBig(5))
|
||||
assert.Equal(t, iToBig(3), fq1.Affine(res))
|
||||
|
||||
res = fq1.Sub(iToBig(5), iToBig(7))
|
||||
assert.Equal(t, iToBig(5), fq1.Affine(res))
|
||||
|
||||
res = fq1.Neg(iToBig(5))
|
||||
assert.Equal(t, iToBig(2), fq1.Affine(res))
|
||||
|
||||
res = fq1.Mul(iToBig(5), iToBig(11))
|
||||
assert.Equal(t, iToBig(6), fq1.Affine(res))
|
||||
|
||||
res = fq1.Inverse(iToBig(4))
|
||||
assert.Equal(t, iToBig(2), res)
|
||||
|
||||
res = fq1.Square(iToBig(5))
|
||||
assert.Equal(t, iToBig(4), res)
|
||||
}
|
||||
@@ -6,7 +6,7 @@ import (
|
||||
|
||||
"github.com/ethereum/go-ethereum/crypto"
|
||||
_constants "github.com/iden3/go-iden3-crypto/constants"
|
||||
"github.com/iden3/go-iden3-crypto/field"
|
||||
"github.com/iden3/go-iden3-crypto/ff"
|
||||
"github.com/iden3/go-iden3-crypto/utils"
|
||||
)
|
||||
|
||||
@@ -15,73 +15,72 @@ const SEED = "mimc"
|
||||
var constants = generateConstantsData()
|
||||
|
||||
type constantsData struct {
|
||||
maxFieldVal *big.Int
|
||||
seedHash *big.Int
|
||||
iv *big.Int
|
||||
fqR field.Fq
|
||||
nRounds int
|
||||
cts []*big.Int
|
||||
seedHash *big.Int
|
||||
iv *big.Int
|
||||
nRounds int
|
||||
cts []*ff.Element
|
||||
}
|
||||
|
||||
func generateConstantsData() constantsData {
|
||||
var constants constantsData
|
||||
|
||||
fqR := field.NewFq(_constants.Q)
|
||||
constants.fqR = fqR
|
||||
|
||||
// maxFieldVal is the R value of the Finite Field
|
||||
constants.maxFieldVal = constants.fqR.Q
|
||||
|
||||
constants.seedHash = new(big.Int).SetBytes(crypto.Keccak256([]byte(SEED)))
|
||||
c := new(big.Int).SetBytes(crypto.Keccak256([]byte(SEED + "_iv")))
|
||||
constants.iv = new(big.Int).Mod(c, constants.maxFieldVal)
|
||||
constants.iv = new(big.Int).Mod(c, _constants.Q)
|
||||
|
||||
constants.nRounds = 91
|
||||
cts := getConstants(constants.fqR, SEED, constants.nRounds)
|
||||
cts := getConstants(SEED, constants.nRounds)
|
||||
constants.cts = cts
|
||||
return constants
|
||||
}
|
||||
|
||||
func getConstants(fqR field.Fq, seed string, nRounds int) []*big.Int {
|
||||
cts := make([]*big.Int, nRounds)
|
||||
cts[0] = big.NewInt(int64(0))
|
||||
func getConstants(seed string, nRounds int) []*ff.Element {
|
||||
cts := make([]*ff.Element, nRounds)
|
||||
cts[0] = ff.NewElement()
|
||||
c := new(big.Int).SetBytes(crypto.Keccak256([]byte(SEED)))
|
||||
for i := 1; i < nRounds; i++ {
|
||||
c = new(big.Int).SetBytes(crypto.Keccak256(c.Bytes()))
|
||||
|
||||
n := fqR.Affine(c)
|
||||
cts[i] = n
|
||||
n := new(big.Int).Mod(c, _constants.Q)
|
||||
cts[i] = ff.NewElement().SetBigInt(n)
|
||||
}
|
||||
return cts
|
||||
}
|
||||
|
||||
// MIMC7HashGeneric performs the MIMC7 hash over a *big.Int, in a generic way, where it can be specified the Finite Field over R, and the number of rounds
|
||||
func MIMC7HashGeneric(fqR field.Fq, xIn, k *big.Int, nRounds int) *big.Int {
|
||||
cts := getConstants(fqR, SEED, nRounds)
|
||||
var r *big.Int
|
||||
func MIMC7HashGeneric(xInBI, kBI *big.Int, nRounds int) *big.Int {
|
||||
xIn := ff.NewElement().SetBigInt(xInBI)
|
||||
k := ff.NewElement().SetBigInt(kBI)
|
||||
|
||||
cts := getConstants(SEED, nRounds)
|
||||
var r *ff.Element
|
||||
for i := 0; i < nRounds; i++ {
|
||||
var t *big.Int
|
||||
var t *ff.Element
|
||||
if i == 0 {
|
||||
t = fqR.Add(xIn, k)
|
||||
t = ff.NewElement().Add(xIn, k)
|
||||
} else {
|
||||
t = fqR.Add(fqR.Add(r, k), cts[i])
|
||||
t = ff.NewElement().Add(ff.NewElement().Add(r, k), cts[i])
|
||||
}
|
||||
t2 := fqR.Square(t)
|
||||
t4 := fqR.Square(t2)
|
||||
r = fqR.Mul(fqR.Mul(t4, t2), t)
|
||||
t2 := ff.NewElement().Square(t)
|
||||
t4 := ff.NewElement().Square(t2)
|
||||
r = ff.NewElement().Mul(ff.NewElement().Mul(t4, t2), t)
|
||||
}
|
||||
return fqR.Affine(fqR.Add(r, k))
|
||||
rE := ff.NewElement().Add(r, k)
|
||||
|
||||
res := big.NewInt(0)
|
||||
rE.ToBigIntRegular(res)
|
||||
return res
|
||||
}
|
||||
|
||||
// HashGeneric performs the MIMC7 hash over a *big.Int array, in a generic way, where it can be specified the Finite Field over R, and the number of rounds
|
||||
func HashGeneric(iv *big.Int, arr []*big.Int, fqR field.Fq, nRounds int) (*big.Int, error) {
|
||||
func HashGeneric(iv *big.Int, arr []*big.Int, nRounds int) (*big.Int, error) {
|
||||
if !utils.CheckBigIntArrayInField(arr) {
|
||||
return nil, errors.New("inputs values not inside Finite Field")
|
||||
}
|
||||
r := iv
|
||||
var err error
|
||||
for i := 0; i < len(arr); i++ {
|
||||
r = MIMC7HashGeneric(fqR, r, arr[i], nRounds)
|
||||
r = MIMC7HashGeneric(r, arr[i], nRounds)
|
||||
if err != nil {
|
||||
return r, err
|
||||
}
|
||||
@@ -90,20 +89,27 @@ func HashGeneric(iv *big.Int, arr []*big.Int, fqR field.Fq, nRounds int) (*big.I
|
||||
}
|
||||
|
||||
// MIMC7Hash performs the MIMC7 hash over a *big.Int, using the Finite Field over R and the number of rounds setted in the `constants` variable
|
||||
func MIMC7Hash(xIn, k *big.Int) *big.Int {
|
||||
var r *big.Int
|
||||
func MIMC7Hash(xInBI, kBI *big.Int) *big.Int {
|
||||
xIn := ff.NewElement().SetBigInt(xInBI)
|
||||
k := ff.NewElement().SetBigInt(kBI)
|
||||
|
||||
var r *ff.Element
|
||||
for i := 0; i < constants.nRounds; i++ {
|
||||
var t *big.Int
|
||||
var t *ff.Element
|
||||
if i == 0 {
|
||||
t = constants.fqR.Add(xIn, k)
|
||||
t = ff.NewElement().Add(xIn, k)
|
||||
} else {
|
||||
t = constants.fqR.Add(constants.fqR.Add(r, k), constants.cts[i])
|
||||
t = ff.NewElement().Add(ff.NewElement().Add(r, k), constants.cts[i])
|
||||
}
|
||||
t2 := constants.fqR.Square(t)
|
||||
t4 := constants.fqR.Square(t2)
|
||||
r = constants.fqR.Mul(constants.fqR.Mul(t4, t2), t)
|
||||
t2 := ff.NewElement().Square(t)
|
||||
t4 := ff.NewElement().Square(t2)
|
||||
r = ff.NewElement().Mul(ff.NewElement().Mul(t4, t2), t)
|
||||
}
|
||||
return constants.fqR.Affine(constants.fqR.Add(r, k))
|
||||
rE := ff.NewElement().Add(r, k)
|
||||
|
||||
res := big.NewInt(0)
|
||||
rE.ToBigIntRegular(res)
|
||||
return res
|
||||
}
|
||||
|
||||
// Hash performs the MIMC7 hash over a *big.Int array
|
||||
@@ -113,17 +119,18 @@ func Hash(arr []*big.Int, key *big.Int) (*big.Int, error) {
|
||||
}
|
||||
var r *big.Int
|
||||
if key == nil {
|
||||
r = constants.fqR.Zero()
|
||||
r = big.NewInt(0)
|
||||
} else {
|
||||
r = key
|
||||
}
|
||||
for i := 0; i < len(arr); i++ {
|
||||
r = constants.fqR.Add(
|
||||
constants.fqR.Add(
|
||||
r = new(big.Int).Add(
|
||||
new(big.Int).Add(
|
||||
r,
|
||||
arr[i],
|
||||
),
|
||||
MIMC7Hash(arr[i], r))
|
||||
r = new(big.Int).Mod(r, _constants.Q)
|
||||
}
|
||||
return r, nil
|
||||
}
|
||||
|
||||
@@ -6,7 +6,6 @@ import (
|
||||
"testing"
|
||||
|
||||
"github.com/ethereum/go-ethereum/crypto"
|
||||
"github.com/iden3/go-iden3-crypto/field"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
@@ -22,16 +21,12 @@ func TestMIMC7Generic(t *testing.T) {
|
||||
b2 := big.NewInt(int64(2))
|
||||
b3 := big.NewInt(int64(3))
|
||||
|
||||
r, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
|
||||
assert.True(t, ok)
|
||||
fqR := field.NewFq(r)
|
||||
|
||||
bigArray := []*big.Int{b1, b2, b3}
|
||||
|
||||
// Generic Hash
|
||||
mhg := MIMC7HashGeneric(fqR, b1, b2, 91)
|
||||
mhg := MIMC7HashGeneric(b1, b2, 91)
|
||||
assert.Equal(t, "10594780656576967754230020536574539122676596303354946869887184401991294982664", mhg.String())
|
||||
hg, err := HashGeneric(fqR.Zero(), bigArray, fqR, 91)
|
||||
hg, err := HashGeneric(big.NewInt(0), bigArray, 91)
|
||||
assert.Nil(t, err)
|
||||
assert.Equal(t, "6464402164086696096195815557694604139393321133243036833927490113253119343397", (*big.Int)(hg).String())
|
||||
}
|
||||
|
||||
@@ -20,7 +20,7 @@ var constC []*ff.Element
|
||||
var constM [T][T]*ff.Element
|
||||
|
||||
func Zero() *ff.Element {
|
||||
return ff.NewElement().SetZero()
|
||||
return ff.NewElement()
|
||||
}
|
||||
|
||||
func modQ(v *big.Int) {
|
||||
@@ -71,7 +71,7 @@ func getMDS() [T][T]*ff.Element {
|
||||
|
||||
func checkAllDifferent(v []*ff.Element) bool {
|
||||
for i := 0; i < len(v); i++ {
|
||||
if v[i].Equal(ff.NewElement().SetZero()) {
|
||||
if v[i].Equal(ff.NewElement()) {
|
||||
return false
|
||||
}
|
||||
for j := i + 1; j < len(v); j++ {
|
||||
@@ -92,7 +92,6 @@ func ark(state [T]*ff.Element, c *ff.Element) {
|
||||
|
||||
// cubic performs x^5 mod p
|
||||
// https://eprint.iacr.org/2019/458.pdf page 8
|
||||
// var five = big.NewInt(5)
|
||||
|
||||
func cubic(a *ff.Element) {
|
||||
a.Exp(*a, 5)
|
||||
|
||||
Reference in New Issue
Block a user