|
|
package snark
import ( "fmt" "github.com/arnaucube/go-snark/circuitcompiler" "github.com/arnaucube/go-snark/r1csqap" "github.com/stretchr/testify/assert" "math/big" "strings" "testing" "time" )
type InOut struct { inputs []*big.Int result *big.Int }
type TraceCorrectnessTest struct { code string io []InOut }
var bigNumberResult1, _ = new(big.Int).SetString("2297704271284150716235246193843898764109352875", 10) var bigNumberResult2, _ = new(big.Int).SetString("75263346540254220740876250", 10)
var correctnesTest = []TraceCorrectnessTest{ //{
// io: []InOut{{
// inputs: []*big.Int{big.NewInt(int64(7)), big.NewInt(int64(11))},
// result: big.NewInt(int64(1729500084900343)),
// }, {
// inputs: []*big.Int{big.NewInt(int64(365235)), big.NewInt(int64(11876525))},
//
// result: bigNumberResult1,
// }},
// code: `
//def main( x , z ) :
// out = do(z) + add(x,x)
//
//def do(x):
// e = x * 5
// b = e * 6
// c = b * 7
// f = c * 1
// d = c * f
// out = d * mul(d,e)
//
//def add(x ,k):
// z = k * x
// out = do(x) + mul(x,z)
//
//
//def mul(a,b):
// out = a * b
//`,
//},
//{io: []InOut{{
// inputs: []*big.Int{big.NewInt(int64(7))},
// result: big.NewInt(int64(4)),
//}},
// code: `
//def mul(a,b):
// out = a * b
//
//def main(a):
// b = a * a
// c = 4 - b
// d = 5 * c
// out = mul(d,c) / mul(b,b)
//`,
//},
//{io: []InOut{{
// inputs: []*big.Int{big.NewInt(int64(7)), big.NewInt(int64(11))},
// result: big.NewInt(int64(22638)),
//}, {
// inputs: []*big.Int{big.NewInt(int64(365235)), big.NewInt(int64(11876525))},
// result: bigNumberResult2,
//}},
// code: `
//def main(a,b):
// d = b + b
// c = a * d
// e = c - a
// out = e * c
//`,
//},
//{
// io: []InOut{{
// inputs: []*big.Int{big.NewInt(int64(643)), big.NewInt(int64(76548465))},
// result: big.NewInt(int64(98441327276)),
// }, {
// inputs: []*big.Int{big.NewInt(int64(365235)), big.NewInt(int64(11876525))},
// result: big.NewInt(int64(8675445947220)),
// }},
// code: `
//def main(a,b):
// c = a + b
// e = c - a
// f = e + b
// g = f + 2
// out = g * a
//`,
//},
{ io: []InOut{{ inputs: []*big.Int{big.NewInt(int64(3)), big.NewInt(int64(5)), big.NewInt(int64(7)), big.NewInt(int64(11))}, result: big.NewInt(int64(444675)), }}, code: ` def main(a,b,c,d): e = a * b f = c * d g = e * f h = g / e i = h * 5 out = g * i `, }, }
func TestGenerateAndVerifyProof(t *testing.T) {
for _, test := range correctnesTest {
parser := circuitcompiler.NewParser(strings.NewReader(test.code)) program, err := parser.Parse()
if err != nil { panic(err) } fmt.Println("\n unreduced") fmt.Println(test.code)
program.BuildConstraintTrees() program.PrintContraintTrees() fmt.Println("\nReduced gates") //PrintTree(froots["mul"])
gates := program.ReduceCombinedTree() for _, g := range gates { fmt.Println(g) }
fmt.Println("generating R1CS") //NOTE MOVE DOES NOTHING CURRENTLY
r1cs := program.GenerateReducedR1CS(gates) //[[0 1 0 0 0 0 0 0 0 0] [0 0 0 1 0 0 0 0 0 0] [0 0 0 0 0 1 0 0 0 0] [0 0 0 0 0 0 0 0 1 0] [0 0 0 0 0 0 0 1 0 0]]
//[[0 0 1 0 0 0 0 0 0 0] [0 0 0 0 1 0 0 0 0 0] [0 0 0 0 0 0 1 0 0 0] [0 0 0 0 0 1 0 0 0 0] [0 0 0 0 0 0 0 0 5 0]]
//[[0 0 0 0 0 1 0 0 0 0] [0 0 0 0 0 0 1 0 0 0] [0 0 0 0 0 0 0 1 0 0] [0 0 0 0 0 0 0 1 0 0] [0 0 0 0 0 0 0 0 0 1]]
a, b, c := r1cs.A, r1cs.B, r1cs.C fmt.Println(a) fmt.Println(b) fmt.Println(c)
// R1CS to QAP
alphas, betas, gammas, domain := Utils.PF.R1CSToQAP(a, b, c) fmt.Println("QAP array lengths") fmt.Println("alphas", len(alphas)) fmt.Println("betas", len(betas)) fmt.Println("gammas", len(gammas)) fmt.Println("domain polynomial ", len(domain))
before := time.Now() //calculate trusted setup
setup, err := GenerateTrustedSetup(program.GlobalInputCount(), alphas, betas, gammas) fmt.Println("Generate CRS time elapsed:", time.Since(before)) assert.Nil(t, err) fmt.Println("\nt:", setup.Toxic.T)
for _, io := range test.io {
inputs := io.inputs fmt.Println("input") fmt.Println(inputs) w := circuitcompiler.CalculateWitness(inputs, r1cs) fmt.Println("\nwitness", w)
assert.Equal(t, io.result, w[program.GlobalInputCount()-1])
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) fmt.Println("ax length", len(ax)) fmt.Println("bx length", len(bx)) fmt.Println("cx length", len(cx)) fmt.Println("px length", len(px))
hxQAP := Utils.PF.DivisorPolynomial(px, domain) fmt.Println("hx length", len(hxQAP))
// hx==px/zx so px==hx*zx
assert.Equal(t, px, Utils.PF.Mul(hxQAP, domain))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx) assert.Equal(t, abc, px)
div, rem := Utils.PF.Div(px, domain) assert.Equal(t, hxQAP, div) //not necessary, since DivisorPolynomial is Div, just discarding 'rem'
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(len(px)-len(domain)))
//// zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation
//assert.Equal(t, domain, setup.Pk.Z)
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
// assert.Equal(t, hxQAP, hx)
assert.Equal(t, px, Utils.PF.Mul(hxQAP, domain)) assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z)) assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1) assert.Equal(t, len(hxQAP), len(px)-len(domain)+1)
before := time.Now() // piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(setup, program.GlobalInputCount(), w, px) fmt.Println("proof generation time elapsed:", time.Since(before)) assert.Nil(t, err)
before = time.Now() assert.True(t, VerifyProof(setup, proof, w[:program.GlobalInputCount()], true)) fmt.Println("verify proof time elapsed:", time.Since(before))
}
}
}
|