|
|
package snark
import ( "fmt" "github.com/mottla/go-snark/circuitcompiler" "github.com/mottla/go-snark/r1csqap" "github.com/stretchr/testify/assert" "math/big" "strings" "testing" )
func TestGenerateProofs(t *testing.T) { z := []*big.Int{big.NewInt(int64(1))} for i := 1; i < 6; i++ { z = Utils.PF.Mul( z, []*big.Int{ Utils.PF.F.Neg( big.NewInt(int64(i))), big.NewInt(int64(1)), }) } fmt.Println(z) for i := 0; i < 7; i++ { fmt.Println(Utils.PF.Eval(z, big.NewInt(int64(i)))) }
z = []*big.Int{big.NewInt(int64(1))} for i := 1; i < 6; i++ { z = Utils.PF.Mul( z, []*big.Int{ big.NewInt(int64(i)), big.NewInt(int64(1)), })
} fmt.Println(z) z = []*big.Int{ big.NewInt(int64(1)), big.NewInt(int64( -3)), } z = Utils.PF.Mul( z, []*big.Int{ big.NewInt(int64(1)), big.NewInt(int64(3)), }) fmt.Println(z) fmt.Println(Utils.PF.F.Neg( big.NewInt(int64(1)))) fmt.Println(Utils.PF.F.Inverse(big.NewInt(int64(1)))) }
func TestNewProgramm(t *testing.T) {
flat := ` func main(a,b,c,d): e = a * b f = c * d g = e * f h = g / e i = h * 5 out = g * i `
parser := circuitcompiler.NewParser(strings.NewReader(flat)) program, err := parser.Parse()
if err != nil { panic(err) } fmt.Println("\n unreduced") fmt.Println(flat)
program.BuildConstraintTrees() program.PrintContraintTrees() fmt.Println("\nReduced gates") //PrintTree(froots["mul"])
gates := program.ReduceCombinedTree() for _, g := range gates { fmt.Println(g) }
fmt.Println("generating R1CS") a, b, c := program.GenerateReducedR1CS(gates) fmt.Println(a) fmt.Println(b) fmt.Println(c) a1 := big.NewInt(int64(6)) a2 := big.NewInt(int64(5)) inputs := []*big.Int{a1, a2, a1, a2} w := program.CalculateWitness(inputs) fmt.Println("witness") fmt.Println(w)
// R1CS to QAP
alphas, betas, gammas, domain := Utils.PF.R1CSToQAP(a, b, c) fmt.Println("qap") fmt.Println("alphas", len(alphas)) fmt.Println("alphas", alphas) fmt.Println("betas", len(betas)) fmt.Println("gammas", len(gammas)) fmt.Println("domain polynomial ", len(domain))
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) fmt.Println("ax length", len(ax)) fmt.Println("bx length", len(bx)) fmt.Println("cx length", len(cx)) fmt.Println("px length", len(px))
hxQAP := Utils.PF.DivisorPolynomial(px, domain) fmt.Println("hx length", hxQAP)
// hx==px/zx so px==hx*zx
assert.Equal(t, px, Utils.PF.Mul(hxQAP, domain))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx) assert.Equal(t, abc, px) hzQAP := Utils.PF.Mul(hxQAP, domain) assert.Equal(t, abc, hzQAP)
div, rem := Utils.PF.Div(px, domain) assert.Equal(t, hxQAP, div) //not necessary
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(len(px)-len(domain)))
//calculate trusted setup
//setup, err := GenerateTrustedSetup(len(w),alphas, betas, gammas)
//assert.Nil(t, err)
//fmt.Println("\nt:", setup.Toxic.T)
////
////// zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation
//assert.Equal(t, domain, setup.Pk.Z)
//
//fmt.Println("hx pk.z", hxQAP)
//hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z)
//fmt.Println("hx pk.z", hx)
//// assert.Equal(t, hxQAP, hx)
//assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
//assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z))
//
//assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1)
//assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1)
//// fmt.Println("pk.Z", len(setup.Pk.Z))
//// fmt.Println("zxQAP", len(zxQAP))
//
//// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
//proof, err := GenerateProofs(*circuit, setup, w, px)
//assert.Nil(t, err)
//
//// fmt.Println("\n proofs:")
//// fmt.Println(proof)
//
//// fmt.Println("public signals:", proof.PublicSignals)
//fmt.Println("\nwitness", w)
//// b1 := big.NewInt(int64(1))
//b35 := big.NewInt(int64(35))
//// publicSignals := []*big.Int{b1, b35}
//publicSignals := []*big.Int{b35}
//before := time.Now()
//assert.True(t, VerifyProof(*circuit, setup, proof, publicSignals, true))
//fmt.Println("verify proof time elapsed:", time.Since(before))
}
|