|
|
package fields
import ( "bytes" "crypto/rand" "math/big" )
// Fq is the Z field over modulus Q
type Fq struct { Q *big.Int // Q
}
// NewFq generates a new Fq
func NewFq(q *big.Int) Fq { return Fq{ q, } }
// Zero returns a Zero value on the Fq
func (fq Fq) Zero() *big.Int { return big.NewInt(int64(0)) }
// One returns a One value on the Fq
func (fq Fq) One() *big.Int { return big.NewInt(int64(1)) }
// Add performs an addition on the Fq
func (fq Fq) Add(a, b *big.Int) *big.Int { r := new(big.Int).Add(a, b) return new(big.Int).Mod(r, fq.Q) // return r
}
// Double performs a doubling on the Fq
func (fq Fq) Double(a *big.Int) *big.Int { r := new(big.Int).Add(a, a) return new(big.Int).Mod(r, fq.Q) // return r
}
// Sub performs a subtraction on the Fq
func (fq Fq) Sub(a, b *big.Int) *big.Int { r := new(big.Int).Sub(a, b) return new(big.Int).Mod(r, fq.Q) // return r
}
// Neg performs a negation on the Fq
func (fq Fq) Neg(a *big.Int) *big.Int { m := new(big.Int).Neg(a) return new(big.Int).Mod(m, fq.Q) // return m
}
// Mul performs a multiplication on the Fq
func (fq Fq) Mul(a, b *big.Int) *big.Int { m := new(big.Int).Mul(a, b) return new(big.Int).Mod(m, fq.Q) // return m
}
func (fq Fq) MulScalar(base, e *big.Int) *big.Int { return fq.Mul(base, e) }
// Inverse returns the inverse on the Fq
func (fq Fq) Inverse(a *big.Int) *big.Int { return new(big.Int).ModInverse(a, fq.Q) // q := bigCopy(fq.Q)
// t := big.NewInt(int64(0))
// r := fq.Q
// newt := big.NewInt(int64(0))
// newr := fq.Affine(a)
// for !bytes.Equal(newr.Bytes(), big.NewInt(int64(0)).Bytes()) {
// q := new(big.Int).Div(bigCopy(r), bigCopy(newr))
//
// t = bigCopy(newt)
// newt = fq.Sub(t, fq.Mul(q, newt))
//
// r = bigCopy(newr)
// newr = fq.Sub(r, fq.Mul(q, newr))
// }
// if t.Cmp(big.NewInt(0)) == -1 { // t< 0
// t = fq.Add(t, q)
// }
// return t
}
// Div performs the division over the finite field
func (fq Fq) Div(a, b *big.Int) *big.Int { d := fq.Mul(a, fq.Inverse(b)) return new(big.Int).Mod(d, fq.Q) }
// Square performs a square operation on the Fq
func (fq Fq) Square(a *big.Int) *big.Int { m := new(big.Int).Mul(a, a) return new(big.Int).Mod(m, fq.Q) }
// Exp performs the exponential over Fq
func (fq Fq) Exp(base *big.Int, e *big.Int) *big.Int { res := fq.One() rem := fq.Copy(e) exp := base
for !bytes.Equal(rem.Bytes(), big.NewInt(int64(0)).Bytes()) { if BigIsOdd(rem) { res = fq.Mul(res, exp) } exp = fq.Square(exp) rem = new(big.Int).Rsh(rem, 1) } return res }
func (fq Fq) Rand() (*big.Int, error) {
// twoexp := new(big.Int).Exp(big.NewInt(2), big.NewInt(int64(maxbits)), nil)
// max := new(big.Int).Sub(twoexp, big.NewInt(1))
maxbits := fq.Q.BitLen() b := make([]byte, (maxbits/8)-1) // b := make([]byte, 3)
// b := make([]byte, 3)
_, err := rand.Read(b) if err != nil { return nil, err } r := new(big.Int).SetBytes(b) rq := new(big.Int).Mod(r, fq.Q)
// return r over q, nil
return rq, nil }
func (fq Fq) IsZero(a *big.Int) bool { return bytes.Equal(a.Bytes(), fq.Zero().Bytes()) }
func (fq Fq) Copy(a *big.Int) *big.Int { return new(big.Int).SetBytes(a.Bytes()) }
func (fq Fq) Affine(a *big.Int) *big.Int { nq := fq.Neg(fq.Q)
aux := a if aux.Cmp(big.NewInt(int64(0))) == -1 { // negative value
if aux.Cmp(nq) != 1 { // aux less or equal nq
aux = new(big.Int).Mod(aux, fq.Q) } if aux.Cmp(big.NewInt(int64(0))) == -1 { // negative value
aux = new(big.Int).Add(aux, fq.Q) } } else { if aux.Cmp(fq.Q) != -1 { // aux greater or equal nq
aux = new(big.Int).Mod(aux, fq.Q) } } return aux }
func (fq Fq) Equal(a, b *big.Int) bool { aAff := fq.Affine(a) bAff := fq.Affine(b) return bytes.Equal(aAff.Bytes(), bAff.Bytes()) }
|