|
|
package r1csqapFloat
import "math/big"
func Transpose(matrix [][]*big.Float) [][]*big.Float { var r [][]*big.Float for i := 0; i < len(matrix[0]); i++ { var row []*big.Float for j := 0; j < len(matrix); j++ { row = append(row, matrix[j][i]) } r = append(r, row) } return r }
func ArrayOfBigZeros(num int) []*big.Float { bigZero := big.NewFloat(float64(0)) var r []*big.Float for i := 0; i < num; i++ { r = append(r, bigZero) } return r }
func PolMul(a, b []*big.Float) []*big.Float { r := ArrayOfBigZeros(len(a) + len(b) - 1) for i := 0; i < len(a); i++ { for j := 0; j < len(b); j++ { r[i+j] = new(big.Float).Add( r[i+j], new(big.Float).Mul(a[i], b[j])) } } return r }
func PolDiv(a, b []*big.Float) ([]*big.Float, []*big.Float) { // https://en.wikipedia.org/wiki/Division_algorithm
r := ArrayOfBigZeros(len(a) - len(b) + 1) rem := a for len(rem) >= len(b) { l := new(big.Float).Quo(rem[len(rem)-1], b[len(b)-1]) pos := len(rem) - len(b) r[pos] = l aux := ArrayOfBigZeros(pos) aux1 := append(aux, l) aux2 := PolSub(rem, PolMul(b, aux1)) rem = aux2[:len(aux2)-1] } return r, rem }
func max(a, b int) int { if a > b { return a } return b }
func PolAdd(a, b []*big.Float) []*big.Float { r := ArrayOfBigZeros(max(len(a), len(b))) for i := 0; i < len(a); i++ { r[i] = new(big.Float).Add(r[i], a[i]) } for i := 0; i < len(b); i++ { r[i] = new(big.Float).Add(r[i], b[i]) } return r }
func PolSub(a, b []*big.Float) []*big.Float { r := ArrayOfBigZeros(max(len(a), len(b))) for i := 0; i < len(a); i++ { r[i] = new(big.Float).Add(r[i], a[i]) } for i := 0; i < len(b); i++ { bneg := new(big.Float).Mul(b[i], big.NewFloat(float64(-1))) r[i] = new(big.Float).Add(r[i], bneg) } return r
}
func FloatPow(a *big.Float, e int) *big.Float { if e == 0 { return big.NewFloat(float64(1)) } result := new(big.Float).Copy(a) for i := 0; i < e-1; i++ { result = new(big.Float).Mul(result, a) } return result }
func PolEval(v []*big.Float, x *big.Float) *big.Float { r := big.NewFloat(float64(0)) for i := 0; i < len(v); i++ { xi := FloatPow(x, i) elem := new(big.Float).Mul(v[i], xi) r = new(big.Float).Add(r, elem) } return r }
func NewPolZeroAt(pointPos, totalPoints int, height *big.Float) []*big.Float { fac := 1 for i := 1; i < totalPoints+1; i++ { if i != pointPos { fac = fac * (pointPos - i) } } facBig := big.NewFloat(float64(fac)) hf := new(big.Float).Quo(height, facBig) r := []*big.Float{hf} for i := 1; i < totalPoints+1; i++ { if i != pointPos { ineg := big.NewFloat(float64(-i)) b1 := big.NewFloat(float64(1)) r = PolMul(r, []*big.Float{ineg, b1}) } } return r }
func LagrangeInterpolation(v []*big.Float) []*big.Float { // https://en.wikipedia.org/wiki/Lagrange_polynomial
var r []*big.Float for i := 0; i < len(v); i++ { r = PolAdd(r, NewPolZeroAt(i+1, len(v), v[i])) } //
return r }
func R1CSToQAP(a, b, c [][]*big.Float) ([][]*big.Float, [][]*big.Float, [][]*big.Float, []*big.Float) { aT := Transpose(a) bT := Transpose(b) cT := Transpose(c) var alphas [][]*big.Float for i := 0; i < len(aT); i++ { alphas = append(alphas, LagrangeInterpolation(aT[i])) } var betas [][]*big.Float for i := 0; i < len(bT); i++ { betas = append(betas, LagrangeInterpolation(bT[i])) } var gammas [][]*big.Float for i := 0; i < len(cT); i++ { gammas = append(gammas, LagrangeInterpolation(cT[i])) } z := []*big.Float{big.NewFloat(float64(1))} for i := 1; i < len(aT[0])+1; i++ { ineg := big.NewFloat(float64(-i)) b1 := big.NewFloat(float64(1)) z = PolMul(z, []*big.Float{ineg, b1}) } return alphas, betas, gammas, z }
func CombinePolynomials(r []*big.Float, ap, bp, cp [][]*big.Float) ([]*big.Float, []*big.Float, []*big.Float, []*big.Float) { var alpha []*big.Float for i := 0; i < len(r); i++ { m := PolMul([]*big.Float{r[i]}, ap[i]) alpha = PolAdd(alpha, m) } var beta []*big.Float for i := 0; i < len(r); i++ { m := PolMul([]*big.Float{r[i]}, bp[i]) beta = PolAdd(beta, m) } var gamma []*big.Float for i := 0; i < len(r); i++ { m := PolMul([]*big.Float{r[i]}, cp[i]) gamma = PolAdd(gamma, m) }
px := PolSub(PolMul(alpha, beta), gamma) return alpha, beta, gamma, px }
func DivisorPolinomial(px, z []*big.Float) []*big.Float { quo, _ := PolDiv(px, z) return quo }
|