|
|
package bn128
import ( "math/big"
"github.com/mottla/go-snark/fields" )
type G2 struct { F fields.Fq2 G [3][2]*big.Int }
func NewG2(f fields.Fq2, g [2][2]*big.Int) G2 { var g2 G2 g2.F = f g2.G = [3][2]*big.Int{ g[0], g[1], g2.F.One(), } return g2 }
func (g2 G2) Zero() [3][2]*big.Int { return [3][2]*big.Int{g2.F.Zero(), g2.F.One(), g2.F.Zero()} } func (g2 G2) IsZero(p [3][2]*big.Int) bool { return g2.F.IsZero(p[2]) }
func (g2 G2) Add(p1, p2 [3][2]*big.Int) [3][2]*big.Int {
// https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
// https://github.com/zcash/zcash/blob/master/src/snark/libsnark/algebra/curves/alt_bn128/alt_bn128_g2.cpp#L208
// http://hyperelliptic.org/EFD/g2p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
if g2.IsZero(p1) { return p2 } if g2.IsZero(p2) { return p1 }
x1 := p1[0] y1 := p1[1] z1 := p1[2] x2 := p2[0] y2 := p2[1] z2 := p2[2]
z1z1 := g2.F.Square(z1) z2z2 := g2.F.Square(z2)
u1 := g2.F.Mul(x1, z2z2) u2 := g2.F.Mul(x2, z1z1)
t0 := g2.F.Mul(z2, z2z2) s1 := g2.F.Mul(y1, t0)
t1 := g2.F.Mul(z1, z1z1) s2 := g2.F.Mul(y2, t1)
h := g2.F.Sub(u2, u1) t2 := g2.F.Add(h, h) i := g2.F.Square(t2) j := g2.F.Mul(h, i) t3 := g2.F.Sub(s2, s1) r := g2.F.Add(t3, t3) v := g2.F.Mul(u1, i) t4 := g2.F.Square(r) t5 := g2.F.Add(v, v) t6 := g2.F.Sub(t4, j) x3 := g2.F.Sub(t6, t5) t7 := g2.F.Sub(v, x3) t8 := g2.F.Mul(s1, j) t9 := g2.F.Add(t8, t8) t10 := g2.F.Mul(r, t7)
y3 := g2.F.Sub(t10, t9)
t11 := g2.F.Add(z1, z2) t12 := g2.F.Square(t11) t13 := g2.F.Sub(t12, z1z1) t14 := g2.F.Sub(t13, z2z2) z3 := g2.F.Mul(t14, h)
return [3][2]*big.Int{x3, y3, z3} }
func (g2 G2) Neg(p [3][2]*big.Int) [3][2]*big.Int { return [3][2]*big.Int{ p[0], g2.F.Neg(p[1]), p[2], } }
func (g2 G2) Sub(a, b [3][2]*big.Int) [3][2]*big.Int { return g2.Add(a, g2.Neg(b)) }
func (g2 G2) Double(p [3][2]*big.Int) [3][2]*big.Int {
// https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
// http://hyperelliptic.org/EFD/g2p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
// https://github.com/zcash/zcash/blob/master/src/snark/libsnark/algebra/curves/alt_bn128/alt_bn128_g2.cpp#L325
if g2.IsZero(p) { return p }
a := g2.F.Square(p[0]) b := g2.F.Square(p[1]) c := g2.F.Square(b)
t0 := g2.F.Add(p[0], b) t1 := g2.F.Square(t0) t2 := g2.F.Sub(t1, a) t3 := g2.F.Sub(t2, c)
d := g2.F.Double(t3) e := g2.F.Add(g2.F.Add(a, a), a) f := g2.F.Square(e)
t4 := g2.F.Double(d) x3 := g2.F.Sub(f, t4)
t5 := g2.F.Sub(d, x3) twoC := g2.F.Add(c, c) fourC := g2.F.Add(twoC, twoC) t6 := g2.F.Add(fourC, fourC) t7 := g2.F.Mul(e, t5) y3 := g2.F.Sub(t7, t6)
t8 := g2.F.Mul(p[1], p[2]) z3 := g2.F.Double(t8)
return [3][2]*big.Int{x3, y3, z3} }
func (g2 G2) MulScalar(p [3][2]*big.Int, e *big.Int) [3][2]*big.Int { // https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Double-and-add
q := [3][2]*big.Int{g2.F.Zero(), g2.F.Zero(), g2.F.Zero()} d := g2.F.F.Copy(e) // d := e
r := p
/* here are three possible implementations: */
/* index decreasing: */ for i := d.BitLen() - 1; i >= 0; i-- { q = g2.Double(q) if d.Bit(i) == 1 { q = g2.Add(q, r) } }
/* index increasing: */ // for i := 0; i <= d.BitLen(); i++ {
// if d.Bit(i) == 1 {
// q = g2.Add(q, r)
// }
// r = g2.Double(r)
// }
// foundone := false
// for i := d.BitLen(); i >= 0; i-- {
// if foundone {
// q = g2.Double(q)
// }
// if d.Bit(i) == 1 {
// foundone = true
// q = g2.Add(q, r)
// }
// }
return q }
func (g2 G2) Affine(p [3][2]*big.Int) [3][2]*big.Int { if g2.IsZero(p) { return g2.Zero() }
zinv := g2.F.Inverse(p[2]) zinv2 := g2.F.Square(zinv) x := g2.F.Mul(p[0], zinv2)
zinv3 := g2.F.Mul(zinv2, zinv) y := g2.F.Mul(p[1], zinv3)
return [3][2]*big.Int{ g2.F.Affine(x), g2.F.Affine(y), g2.F.One(), } }
func (g2 G2) Equal(p1, p2 [3][2]*big.Int) bool { if g2.IsZero(p1) { return g2.IsZero(p2) } if g2.IsZero(p2) { return g2.IsZero(p1) }
z1z1 := g2.F.Square(p1[2]) z2z2 := g2.F.Square(p2[2])
u1 := g2.F.Mul(p1[0], z2z2) u2 := g2.F.Mul(p2[0], z1z1)
z1cub := g2.F.Mul(p1[2], z1z1) z2cub := g2.F.Mul(p2[2], z2z2)
s1 := g2.F.Mul(p1[1], z2cub) s2 := g2.F.Mul(p2[1], z1cub)
return g2.F.Equal(u1, u2) && g2.F.Equal(s1, s2) }
|