|
|
package snark
import ( "encoding/json" "fmt" "math/big" "strings" "testing" "time"
"github.com/arnaucube/go-snark/circuitcompiler" "github.com/arnaucube/go-snark/r1csqap" "github.com/stretchr/testify/assert" )
func TestZkFromFlatCircuitCode(t *testing.T) {
// compile circuit and get the R1CS
flatCode := ` func test(x): aux = x*x y = aux*x z = x + y out = z + 5 ` fmt.Print("\nflat code of the circuit:") fmt.Println(flatCode)
// parse the code
parser := circuitcompiler.NewParser(strings.NewReader(flatCode)) circuit, err := parser.Parse() assert.Nil(t, err) fmt.Println("\ncircuit data:", circuit) circuitJson, _ := json.Marshal(circuit) fmt.Println("circuit:", string(circuitJson))
b3 := big.NewInt(int64(3)) privateInputs := []*big.Int{b3} // wittness
w, err := circuit.CalculateWitness(privateInputs) assert.Nil(t, err) fmt.Println("\nwitness", w)
// flat code to R1CS
fmt.Println("\ngenerating R1CS from flat code") a, b, c := circuit.GenerateR1CS() fmt.Println("\nR1CS:") fmt.Println("a:", a) fmt.Println("b:", b) fmt.Println("c:", c)
// R1CS to QAP
// TODO zxQAP is not used and is an old impl, bad calculated. TODO remove
alphas, betas, gammas, zxQAP := Utils.PF.R1CSToQAP(a, b, c) fmt.Println("qap") fmt.Println("alphas", len(alphas)) fmt.Println("alphas[1]", alphas[1]) fmt.Println("betas", len(betas)) fmt.Println("gammas", len(gammas)) fmt.Println("zx length", len(zxQAP))
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas) fmt.Println("ax length", len(ax)) fmt.Println("bx length", len(bx)) fmt.Println("cx length", len(cx)) fmt.Println("px length", len(px)) fmt.Println("px[last]", px[0]) px0 := Utils.PF.F.Add(px[0], big.NewInt(int64(88))) fmt.Println(px0) assert.Equal(t, px0.Bytes(), Utils.PF.F.Zero().Bytes())
hxQAP := Utils.PF.DivisorPolynomial(px, zxQAP) fmt.Println("hx length", len(hxQAP))
// hx==px/zx so px==hx*zx
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx) assert.Equal(t, abc, px) hzQAP := Utils.PF.Mul(hxQAP, zxQAP) assert.Equal(t, abc, hzQAP)
div, rem := Utils.PF.Div(px, zxQAP) assert.Equal(t, hxQAP, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
// calculate trusted setup
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas) assert.Nil(t, err) fmt.Println("\nt:", setup.Toxic.T)
// zx and setup.Pk.Z should be the same (currently not, the correct one is the calculation used inside GenerateTrustedSetup function), the calculation is repeated. TODO avoid repeating calculation
// assert.Equal(t, zxQAP, setup.Pk.Z)
fmt.Println("hx pk.z", hxQAP) hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) fmt.Println("hx pk.z", hx) // assert.Equal(t, hxQAP, hx)
assert.Equal(t, px, Utils.PF.Mul(hxQAP, zxQAP)) // hx==px/zx so px==hx*zx
assert.Equal(t, px, Utils.PF.Mul(hx, setup.Pk.Z))
// check length of polynomials H(x) and Z(x)
assert.Equal(t, len(hx), len(px)-len(setup.Pk.Z)+1) assert.Equal(t, len(hxQAP), len(px)-len(zxQAP)+1)
// fmt.Println("pk.Z", len(setup.Pk.Z))
// fmt.Println("zxQAP", len(zxQAP))
proof, err := GenerateProofs(*circuit, setup, w, px) assert.Nil(t, err)
// fmt.Println("\n proofs:")
// fmt.Println(proof)
// fmt.Println("public signals:", proof.PublicSignals)
fmt.Println("\nwitness", w) // b1 := big.NewInt(int64(1))
b35 := big.NewInt(int64(35)) // publicSignals := []*big.Int{b1, b35}
publicSignals := []*big.Int{b35} before := time.Now() assert.True(t, VerifyProof(*circuit, setup, proof, publicSignals, true)) fmt.Println("verify proof time elapsed:", time.Since(before)) }
/* func TestZkMultiplication(t *testing.T) {
// compile circuit and get the R1CS
flatCode := ` func test(a, b): out = a * b `
// parse the code
parser := circuitcompiler.NewParser(strings.NewReader(flatCode)) circuit, err := parser.Parse() assert.Nil(t, err)
b3 := big.NewInt(int64(3)) b4 := big.NewInt(int64(4)) inputs := []*big.Int{b3, b4} // wittness
w, err := circuit.CalculateWitness(inputs) assert.Nil(t, err)
fmt.Println("circuit") fmt.Println(circuit.NPublic)
// flat code to R1CS
a, b, c := circuit.GenerateR1CS() fmt.Println("\nR1CS:") fmt.Println("a:", a) fmt.Println("b:", b) fmt.Println("c:", c)
// R1CS to QAP
alphas, betas, gammas, zx := Utils.PF.R1CSToQAP(a, b, c) fmt.Println("qap") fmt.Println("alphas", alphas) fmt.Println("betas", betas) fmt.Println("gammas", gammas)
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
hx := Utils.PF.DivisorPolynomial(px, zx)
// hx==px/zx so px==hx*zx
assert.Equal(t, px, Utils.PF.Mul(hx, zx))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx) assert.Equal(t, abc, px) hz := Utils.PF.Mul(hx, zx) assert.Equal(t, abc, hz)
div, rem := Utils.PF.Div(px, zx) assert.Equal(t, hx, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(1))
// calculate trusted setup
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas, zx) assert.Nil(t, err)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(*circuit, setup, hx, w) assert.Nil(t, err)
// assert.True(t, VerifyProof(*circuit, setup, proof, false))
b35 := big.NewInt(int64(35)) publicSignals := []*big.Int{b35} assert.True(t, VerifyProof(*circuit, setup, proof, publicSignals, true)) } */ /* func TestZkFromHardcodedR1CS(t *testing.T) { b0 := big.NewInt(int64(0)) b1 := big.NewInt(int64(1)) b3 := big.NewInt(int64(3)) b5 := big.NewInt(int64(5)) b9 := big.NewInt(int64(9)) b27 := big.NewInt(int64(27)) b30 := big.NewInt(int64(30)) b35 := big.NewInt(int64(35)) a := [][]*big.Int{ []*big.Int{b0, b0, b1, b0, b0, b0}, []*big.Int{b0, b0, b0, b1, b0, b0}, []*big.Int{b0, b0, b1, b0, b1, b0}, []*big.Int{b5, b0, b0, b0, b0, b1}, } b := [][]*big.Int{ []*big.Int{b0, b0, b1, b0, b0, b0}, []*big.Int{b0, b0, b1, b0, b0, b0}, []*big.Int{b1, b0, b0, b0, b0, b0}, []*big.Int{b1, b0, b0, b0, b0, b0}, } c := [][]*big.Int{ []*big.Int{b0, b0, b0, b1, b0, b0}, []*big.Int{b0, b0, b0, b0, b1, b0}, []*big.Int{b0, b0, b0, b0, b0, b1}, []*big.Int{b0, b1, b0, b0, b0, b0}, } alphas, betas, gammas, zx := Utils.PF.R1CSToQAP(a, b, c)
// wittness = 1, 35, 3, 9, 27, 30
w := []*big.Int{b1, b35, b3, b9, b27, b30} circuit := circuitcompiler.Circuit{ NVars: 6, NPublic: 1, NSignals: len(w), } ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
hx := Utils.PF.DivisorPolynomial(px, zx)
// hx==px/zx so px==hx*zx
assert.Equal(t, px, Utils.PF.Mul(hx, zx))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx) assert.Equal(t, abc, px) hz := Utils.PF.Mul(hx, zx) assert.Equal(t, abc, hz)
div, rem := Utils.PF.Div(px, zx) assert.Equal(t, hx, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
// calculate trusted setup
setup, err := GenerateTrustedSetup(len(w), circuit, alphas, betas, gammas, zx) assert.Nil(t, err)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(circuit, setup, hx, w) assert.Nil(t, err)
// assert.True(t, VerifyProof(circuit, setup, proof, true))
publicSignals := []*big.Int{b35} assert.True(t, VerifyProof(circuit, setup, proof, publicSignals, true)) }
func TestZkMultiplication(t *testing.T) {
// compile circuit and get the R1CS
flatCode := ` func test(a, b): out = a * b `
// parse the code
parser := circuitcompiler.NewParser(strings.NewReader(flatCode)) circuit, err := parser.Parse() assert.Nil(t, err)
b3 := big.NewInt(int64(3)) b4 := big.NewInt(int64(4)) inputs := []*big.Int{b3, b4} // wittness
w, err := circuit.CalculateWitness(inputs) assert.Nil(t, err)
// flat code to R1CS
a, b, c := circuit.GenerateR1CS()
// R1CS to QAP
alphas, betas, gammas, zx := Utils.PF.R1CSToQAP(a, b, c)
ax, bx, cx, px := Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
hx := Utils.PF.DivisorPolynomial(px, zx)
// hx==px/zx so px==hx*zx
assert.Equal(t, px, Utils.PF.Mul(hx, zx))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := Utils.PF.Sub(Utils.PF.Mul(ax, bx), cx) assert.Equal(t, abc, px) hz := Utils.PF.Mul(hx, zx) assert.Equal(t, abc, hz)
div, rem := Utils.PF.Div(px, zx) assert.Equal(t, hx, div) assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(1))
// calculate trusted setup
setup, err := GenerateTrustedSetup(len(w), *circuit, alphas, betas, gammas, zx) assert.Nil(t, err)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(*circuit, setup, hx, w) assert.Nil(t, err)
// assert.True(t, VerifyProof(*circuit, setup, proof, false))
b35 := big.NewInt(int64(35)) publicSignals := []*big.Int{b35} assert.True(t, VerifyProof(*circuit, setup, proof, publicSignals, true)) } */
|