mirror of
https://github.com/arnaucube/go-snark-study.git
synced 2026-02-02 17:26:41 +01:00
r1cs to qap over finite field
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
## Bn128
|
||||
Implementation of the bn128 pairing.
|
||||
Implementation of the bn128 pairing in Go.
|
||||
|
||||
|
||||
Implementation followng the information and the implementations from:
|
||||
|
||||
@@ -1,21 +1,23 @@
|
||||
package bn128
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"errors"
|
||||
"math/big"
|
||||
|
||||
"github.com/arnaucube/go-snark/fields"
|
||||
)
|
||||
|
||||
type Bn128 struct {
|
||||
Q *big.Int
|
||||
R *big.Int
|
||||
Gg1 [2]*big.Int
|
||||
Gg2 [2][2]*big.Int
|
||||
NonResidueFq2 *big.Int
|
||||
NonResidueFq6 [2]*big.Int
|
||||
Fq1 Fq
|
||||
Fq2 Fq2
|
||||
Fq6 Fq6
|
||||
Fq12 Fq12
|
||||
Fq1 fields.Fq
|
||||
Fq2 fields.Fq2
|
||||
Fq6 fields.Fq6
|
||||
Fq12 fields.Fq12
|
||||
G1 G1
|
||||
G2 G2
|
||||
LoopCount *big.Int
|
||||
@@ -33,12 +35,18 @@ type Bn128 struct {
|
||||
|
||||
func NewBn128() (Bn128, error) {
|
||||
var b Bn128
|
||||
q, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208583", 10) // i
|
||||
q, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208583", 10)
|
||||
if !ok {
|
||||
return b, errors.New("err with q")
|
||||
}
|
||||
b.Q = q
|
||||
|
||||
r, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
|
||||
if !ok {
|
||||
return b, errors.New("err with r")
|
||||
}
|
||||
b.R = r
|
||||
|
||||
b.Gg1 = [2]*big.Int{
|
||||
big.NewInt(int64(1)),
|
||||
big.NewInt(int64(2)),
|
||||
@@ -72,7 +80,7 @@ func NewBn128() (Bn128, error) {
|
||||
},
|
||||
}
|
||||
|
||||
b.Fq1 = NewFq(q)
|
||||
b.Fq1 = fields.NewFq(q)
|
||||
b.NonResidueFq2, ok = new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208582", 10) // i
|
||||
if !ok {
|
||||
return b, errors.New("err with nonResidueFq2")
|
||||
@@ -82,9 +90,9 @@ func NewBn128() (Bn128, error) {
|
||||
big.NewInt(int64(1)),
|
||||
}
|
||||
|
||||
b.Fq2 = NewFq2(b.Fq1, b.NonResidueFq2)
|
||||
b.Fq6 = NewFq6(b.Fq2, b.NonResidueFq6)
|
||||
b.Fq12 = NewFq12(b.Fq6, b.Fq2, b.NonResidueFq6)
|
||||
b.Fq2 = fields.NewFq2(b.Fq1, b.NonResidueFq2)
|
||||
b.Fq6 = fields.NewFq6(b.Fq2, b.NonResidueFq6)
|
||||
b.Fq12 = fields.NewFq12(b.Fq6, b.Fq2, b.NonResidueFq6)
|
||||
|
||||
b.G1 = NewG1(b.Fq1, b.Gg1)
|
||||
b.G2 = NewG2(b.Fq2, b.Gg2)
|
||||
@@ -97,12 +105,6 @@ func NewBn128() (Bn128, error) {
|
||||
return b, nil
|
||||
}
|
||||
|
||||
func BigIsOdd(n *big.Int) bool {
|
||||
one := big.NewInt(int64(1))
|
||||
and := new(big.Int).And(n, one)
|
||||
return bytes.Equal(and.Bytes(), big.NewInt(int64(1)).Bytes())
|
||||
}
|
||||
|
||||
func (bn128 *Bn128) preparePairing() error {
|
||||
var ok bool
|
||||
bn128.LoopCount, ok = new(big.Int).SetString("29793968203157093288", 10)
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
package bn128
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"math/big"
|
||||
"testing"
|
||||
|
||||
@@ -61,6 +62,8 @@ func TestBN128Pairing(t *testing.T) {
|
||||
|
||||
assert.True(t, bn128.Fq12.Equal(pA, pB))
|
||||
|
||||
assert.Equal(t, pA[0][0][0].String(), "73680848340331011700282047627232219336104151861349893575958589557226556635706")
|
||||
assert.Equal(t, bn128.Fq12.Affine(pA)[0][0][0].String(), "8016119724813186033542830391460394070015218389456422587891475873290878009957")
|
||||
assert.True(t, !bytes.Equal(pA[0][0][0].Bytes(), big.NewInt(int64(0)).Bytes()))
|
||||
assert.True(t, !bytes.Equal(bn128.Fq12.Affine(pA)[0][0][0].Bytes(), big.NewInt(int64(0)).Bytes()))
|
||||
// assert.Equal(t, pA[0][0][0].String(), "73680848340331011700282047627232219336104151861349893575958589557226556635706")
|
||||
// assert.Equal(t, bn128.Fq12.Affine(pA)[0][0][0].String(), "8016119724813186033542830391460394070015218389456422587891475873290878009957")
|
||||
}
|
||||
|
||||
129
bn128/fq.go
129
bn128/fq.go
@@ -1,129 +0,0 @@
|
||||
package bn128
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// Fq is the Z field over modulus Q
|
||||
type Fq struct {
|
||||
Q *big.Int // Q
|
||||
}
|
||||
|
||||
// NewFq generates a new Fq
|
||||
func NewFq(q *big.Int) Fq {
|
||||
return Fq{
|
||||
q,
|
||||
}
|
||||
}
|
||||
|
||||
// Zero returns a Zero value on the Fq
|
||||
func (fq Fq) Zero() *big.Int {
|
||||
return big.NewInt(int64(0))
|
||||
}
|
||||
|
||||
// One returns a One value on the Fq
|
||||
func (fq Fq) One() *big.Int {
|
||||
return big.NewInt(int64(1))
|
||||
}
|
||||
|
||||
// Add performs an addition on the Fq
|
||||
func (fq Fq) Add(a, b *big.Int) *big.Int {
|
||||
r := new(big.Int).Add(a, b)
|
||||
// return new(big.Int).Mod(r, fq.Q)
|
||||
return r
|
||||
}
|
||||
|
||||
// Double performs a doubling on the Fq
|
||||
func (fq Fq) Double(a *big.Int) *big.Int {
|
||||
r := new(big.Int).Add(a, a)
|
||||
// return new(big.Int).Mod(r, fq.Q)
|
||||
return r
|
||||
}
|
||||
|
||||
// Sub performs a subtraction on the Fq
|
||||
func (fq Fq) Sub(a, b *big.Int) *big.Int {
|
||||
r := new(big.Int).Sub(a, b)
|
||||
// return new(big.Int).Mod(r, fq.Q)
|
||||
return r
|
||||
}
|
||||
|
||||
// Neg performs a negation on the Fq
|
||||
func (fq Fq) Neg(a *big.Int) *big.Int {
|
||||
m := new(big.Int).Neg(a)
|
||||
// return new(big.Int).Mod(m, fq.Q)
|
||||
return m
|
||||
}
|
||||
|
||||
// Mul performs a multiplication on the Fq
|
||||
func (fq Fq) Mul(a, b *big.Int) *big.Int {
|
||||
m := new(big.Int).Mul(a, b)
|
||||
return new(big.Int).Mod(m, fq.Q)
|
||||
// return m
|
||||
}
|
||||
|
||||
func (fq Fq) MulScalar(base, e *big.Int) *big.Int {
|
||||
return fq.Mul(base, e)
|
||||
}
|
||||
|
||||
// Inverse returns the inverse on the Fq
|
||||
func (fq Fq) Inverse(a *big.Int) *big.Int {
|
||||
return new(big.Int).ModInverse(a, fq.Q)
|
||||
// q := bigCopy(fq.Q)
|
||||
// t := big.NewInt(int64(0))
|
||||
// r := fq.Q
|
||||
// newt := big.NewInt(int64(0))
|
||||
// newr := fq.Affine(a)
|
||||
// for !bytes.Equal(newr.Bytes(), big.NewInt(int64(0)).Bytes()) {
|
||||
// q := new(big.Int).Div(bigCopy(r), bigCopy(newr))
|
||||
//
|
||||
// t = bigCopy(newt)
|
||||
// newt = fq.Sub(t, fq.Mul(q, newt))
|
||||
//
|
||||
// r = bigCopy(newr)
|
||||
// newr = fq.Sub(r, fq.Mul(q, newr))
|
||||
// }
|
||||
// if t.Cmp(big.NewInt(0)) == -1 { // t< 0
|
||||
// t = fq.Add(t, q)
|
||||
// }
|
||||
// return t
|
||||
}
|
||||
|
||||
// Square performs a square operation on the Fq
|
||||
func (fq Fq) Square(a *big.Int) *big.Int {
|
||||
m := new(big.Int).Mul(a, a)
|
||||
return new(big.Int).Mod(m, fq.Q)
|
||||
}
|
||||
|
||||
func (fq Fq) IsZero(a *big.Int) bool {
|
||||
return bytes.Equal(a.Bytes(), fq.Zero().Bytes())
|
||||
}
|
||||
|
||||
func (fq Fq) Copy(a *big.Int) *big.Int {
|
||||
return new(big.Int).SetBytes(a.Bytes())
|
||||
}
|
||||
|
||||
func (fq Fq) Affine(a *big.Int) *big.Int {
|
||||
nq := fq.Neg(fq.Q)
|
||||
|
||||
aux := a
|
||||
if aux.Cmp(big.NewInt(int64(0))) == -1 { // negative value
|
||||
if aux.Cmp(nq) != 1 { // aux less or equal nq
|
||||
aux = new(big.Int).Mod(aux, fq.Q)
|
||||
}
|
||||
if aux.Cmp(big.NewInt(int64(0))) == -1 { // negative value
|
||||
aux = new(big.Int).Add(aux, fq.Q)
|
||||
}
|
||||
} else {
|
||||
if aux.Cmp(fq.Q) != -1 { // aux greater or equal nq
|
||||
aux = new(big.Int).Mod(aux, fq.Q)
|
||||
}
|
||||
}
|
||||
return aux
|
||||
}
|
||||
|
||||
func (fq Fq) Equal(a, b *big.Int) bool {
|
||||
aAff := fq.Affine(a)
|
||||
bAff := fq.Affine(b)
|
||||
return bytes.Equal(aAff.Bytes(), bAff.Bytes())
|
||||
}
|
||||
161
bn128/fq12.go
161
bn128/fq12.go
@@ -1,161 +0,0 @@
|
||||
package bn128
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// Fq12 uses the same algorithms than Fq2, but with [2][3][2]*big.Int data structure
|
||||
|
||||
// Fq12 is Field 12
|
||||
type Fq12 struct {
|
||||
F Fq6
|
||||
Fq2 Fq2
|
||||
NonResidue [2]*big.Int
|
||||
}
|
||||
|
||||
// NewFq12 generates a new Fq12
|
||||
func NewFq12(f Fq6, fq2 Fq2, nonResidue [2]*big.Int) Fq12 {
|
||||
fq12 := Fq12{
|
||||
f,
|
||||
fq2,
|
||||
nonResidue,
|
||||
}
|
||||
return fq12
|
||||
}
|
||||
|
||||
// Zero returns a Zero value on the Fq12
|
||||
func (fq12 Fq12) Zero() [2][3][2]*big.Int {
|
||||
return [2][3][2]*big.Int{fq12.F.Zero(), fq12.F.Zero()}
|
||||
}
|
||||
|
||||
// One returns a One value on the Fq12
|
||||
func (fq12 Fq12) One() [2][3][2]*big.Int {
|
||||
return [2][3][2]*big.Int{fq12.F.One(), fq12.F.Zero()}
|
||||
}
|
||||
|
||||
func (fq12 Fq12) mulByNonResidue(a [3][2]*big.Int) [3][2]*big.Int {
|
||||
return [3][2]*big.Int{
|
||||
fq12.Fq2.Mul(fq12.NonResidue, a[2]),
|
||||
a[0],
|
||||
a[1],
|
||||
}
|
||||
}
|
||||
|
||||
// Add performs an addition on the Fq12
|
||||
func (fq12 Fq12) Add(a, b [2][3][2]*big.Int) [2][3][2]*big.Int {
|
||||
return [2][3][2]*big.Int{
|
||||
fq12.F.Add(a[0], b[0]),
|
||||
fq12.F.Add(a[1], b[1]),
|
||||
}
|
||||
}
|
||||
|
||||
// Double performs a doubling on the Fq12
|
||||
func (fq12 Fq12) Double(a [2][3][2]*big.Int) [2][3][2]*big.Int {
|
||||
return fq12.Add(a, a)
|
||||
}
|
||||
|
||||
// Sub performs a subtraction on the Fq12
|
||||
func (fq12 Fq12) Sub(a, b [2][3][2]*big.Int) [2][3][2]*big.Int {
|
||||
return [2][3][2]*big.Int{
|
||||
fq12.F.Sub(a[0], b[0]),
|
||||
fq12.F.Sub(a[1], b[1]),
|
||||
}
|
||||
}
|
||||
|
||||
// Neg performs a negation on the Fq12
|
||||
func (fq12 Fq12) Neg(a [2][3][2]*big.Int) [2][3][2]*big.Int {
|
||||
return fq12.Sub(fq12.Zero(), a)
|
||||
}
|
||||
|
||||
// Mul performs a multiplication on the Fq12
|
||||
func (fq12 Fq12) Mul(a, b [2][3][2]*big.Int) [2][3][2]*big.Int {
|
||||
// Multiplication and Squaring on Pairing-Friendly .pdf; Section 3 (Karatsuba)
|
||||
v0 := fq12.F.Mul(a[0], b[0])
|
||||
v1 := fq12.F.Mul(a[1], b[1])
|
||||
return [2][3][2]*big.Int{
|
||||
fq12.F.Add(v0, fq12.mulByNonResidue(v1)),
|
||||
fq12.F.Sub(
|
||||
fq12.F.Mul(
|
||||
fq12.F.Add(a[0], a[1]),
|
||||
fq12.F.Add(b[0], b[1])),
|
||||
fq12.F.Add(v0, v1)),
|
||||
}
|
||||
}
|
||||
|
||||
func (fq12 Fq12) MulScalar(base [2][3][2]*big.Int, e *big.Int) [2][3][2]*big.Int {
|
||||
// for more possible implementations see g2.go file, at the function g2.MulScalar()
|
||||
|
||||
res := fq12.Zero()
|
||||
rem := e
|
||||
exp := base
|
||||
|
||||
for !bytes.Equal(rem.Bytes(), big.NewInt(int64(0)).Bytes()) {
|
||||
// if rem % 2 == 1
|
||||
if bytes.Equal(new(big.Int).Rem(rem, big.NewInt(int64(2))).Bytes(), big.NewInt(int64(1)).Bytes()) {
|
||||
res = fq12.Add(res, exp)
|
||||
}
|
||||
exp = fq12.Double(exp)
|
||||
rem = rem.Rsh(rem, 1) // rem = rem >> 1
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// Inverse returns the inverse on the Fq12
|
||||
func (fq12 Fq12) Inverse(a [2][3][2]*big.Int) [2][3][2]*big.Int {
|
||||
t0 := fq12.F.Square(a[0])
|
||||
t1 := fq12.F.Square(a[1])
|
||||
t2 := fq12.F.Sub(t0, fq12.mulByNonResidue(t1))
|
||||
t3 := fq12.F.Inverse(t2)
|
||||
return [2][3][2]*big.Int{
|
||||
fq12.F.Mul(a[0], t3),
|
||||
fq12.F.Neg(fq12.F.Mul(a[1], t3)),
|
||||
}
|
||||
}
|
||||
|
||||
// Div performs a division on the Fq12
|
||||
func (fq12 Fq12) Div(a, b [2][3][2]*big.Int) [2][3][2]*big.Int {
|
||||
return fq12.Mul(a, fq12.Inverse(b))
|
||||
}
|
||||
|
||||
// Square performs a square operation on the Fq12
|
||||
func (fq12 Fq12) Square(a [2][3][2]*big.Int) [2][3][2]*big.Int {
|
||||
ab := fq12.F.Mul(a[0], a[1])
|
||||
|
||||
return [2][3][2]*big.Int{
|
||||
fq12.F.Sub(
|
||||
fq12.F.Mul(
|
||||
fq12.F.Add(a[0], a[1]),
|
||||
fq12.F.Add(
|
||||
a[0],
|
||||
fq12.mulByNonResidue(a[1]))),
|
||||
fq12.F.Add(
|
||||
ab,
|
||||
fq12.mulByNonResidue(ab))),
|
||||
fq12.F.Add(ab, ab),
|
||||
}
|
||||
}
|
||||
|
||||
func (fq12 Fq12) Exp(base [2][3][2]*big.Int, e *big.Int) [2][3][2]*big.Int {
|
||||
res := fq12.One()
|
||||
rem := fq12.Fq2.F.Copy(e)
|
||||
exp := base
|
||||
|
||||
for !bytes.Equal(rem.Bytes(), big.NewInt(int64(0)).Bytes()) {
|
||||
if BigIsOdd(rem) {
|
||||
res = fq12.Mul(res, exp)
|
||||
}
|
||||
exp = fq12.Square(exp)
|
||||
rem = new(big.Int).Rsh(rem, 1)
|
||||
}
|
||||
return res
|
||||
}
|
||||
func (fq12 Fq12) Affine(a [2][3][2]*big.Int) [2][3][2]*big.Int {
|
||||
return [2][3][2]*big.Int{
|
||||
fq12.F.Affine(a[0]),
|
||||
fq12.F.Affine(a[1]),
|
||||
}
|
||||
}
|
||||
func (fq12 Fq12) Equal(a, b [2][3][2]*big.Int) bool {
|
||||
return fq12.F.Equal(a[0], b[0]) && fq12.F.Equal(a[1], b[1])
|
||||
}
|
||||
154
bn128/fq2.go
154
bn128/fq2.go
@@ -1,154 +0,0 @@
|
||||
package bn128
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// Fq2 is Field 2
|
||||
type Fq2 struct {
|
||||
F Fq
|
||||
NonResidue *big.Int
|
||||
}
|
||||
|
||||
// NewFq2 generates a new Fq2
|
||||
func NewFq2(f Fq, nonResidue *big.Int) Fq2 {
|
||||
fq2 := Fq2{
|
||||
f,
|
||||
nonResidue,
|
||||
}
|
||||
return fq2
|
||||
}
|
||||
|
||||
// Zero returns a Zero value on the Fq2
|
||||
func (fq2 Fq2) Zero() [2]*big.Int {
|
||||
return [2]*big.Int{fq2.F.Zero(), fq2.F.Zero()}
|
||||
}
|
||||
|
||||
// One returns a One value on the Fq2
|
||||
func (fq2 Fq2) One() [2]*big.Int {
|
||||
return [2]*big.Int{fq2.F.One(), fq2.F.Zero()}
|
||||
}
|
||||
|
||||
func (fq2 Fq2) mulByNonResidue(a *big.Int) *big.Int {
|
||||
return fq2.F.Mul(fq2.NonResidue, a)
|
||||
}
|
||||
|
||||
// Add performs an addition on the Fq2
|
||||
func (fq2 Fq2) Add(a, b [2]*big.Int) [2]*big.Int {
|
||||
return [2]*big.Int{
|
||||
fq2.F.Add(a[0], b[0]),
|
||||
fq2.F.Add(a[1], b[1]),
|
||||
}
|
||||
}
|
||||
|
||||
// Double performs a doubling on the Fq2
|
||||
func (fq2 Fq2) Double(a [2]*big.Int) [2]*big.Int {
|
||||
return fq2.Add(a, a)
|
||||
}
|
||||
|
||||
// Sub performs a subtraction on the Fq2
|
||||
func (fq2 Fq2) Sub(a, b [2]*big.Int) [2]*big.Int {
|
||||
return [2]*big.Int{
|
||||
fq2.F.Sub(a[0], b[0]),
|
||||
fq2.F.Sub(a[1], b[1]),
|
||||
}
|
||||
}
|
||||
|
||||
// Neg performs a negation on the Fq2
|
||||
func (fq2 Fq2) Neg(a [2]*big.Int) [2]*big.Int {
|
||||
return fq2.Sub(fq2.Zero(), a)
|
||||
}
|
||||
|
||||
// Mul performs a multiplication on the Fq2
|
||||
func (fq2 Fq2) Mul(a, b [2]*big.Int) [2]*big.Int {
|
||||
// Multiplication and Squaring on Pairing-Friendly.pdf; Section 3 (Karatsuba)
|
||||
// https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf
|
||||
v0 := fq2.F.Mul(a[0], b[0])
|
||||
v1 := fq2.F.Mul(a[1], b[1])
|
||||
return [2]*big.Int{
|
||||
fq2.F.Add(v0, fq2.mulByNonResidue(v1)),
|
||||
fq2.F.Sub(
|
||||
fq2.F.Mul(
|
||||
fq2.F.Add(a[0], a[1]),
|
||||
fq2.F.Add(b[0], b[1])),
|
||||
fq2.F.Add(v0, v1)),
|
||||
}
|
||||
}
|
||||
|
||||
func (fq2 Fq2) MulScalar(p [2]*big.Int, e *big.Int) [2]*big.Int {
|
||||
// for more possible implementations see g2.go file, at the function g2.MulScalar()
|
||||
|
||||
q := fq2.Zero()
|
||||
d := fq2.F.Copy(e)
|
||||
r := p
|
||||
|
||||
foundone := false
|
||||
for i := d.BitLen(); i >= 0; i-- {
|
||||
if foundone {
|
||||
q = fq2.Double(q)
|
||||
}
|
||||
if d.Bit(i) == 1 {
|
||||
foundone = true
|
||||
q = fq2.Add(q, r)
|
||||
}
|
||||
}
|
||||
return q
|
||||
}
|
||||
|
||||
// Inverse returns the inverse on the Fq2
|
||||
func (fq2 Fq2) Inverse(a [2]*big.Int) [2]*big.Int {
|
||||
// High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves .pdf
|
||||
// https://eprint.iacr.org/2010/354.pdf , algorithm 8
|
||||
t0 := fq2.F.Square(a[0])
|
||||
t1 := fq2.F.Square(a[1])
|
||||
t2 := fq2.F.Sub(t0, fq2.mulByNonResidue(t1))
|
||||
t3 := fq2.F.Inverse(t2)
|
||||
return [2]*big.Int{
|
||||
fq2.F.Mul(a[0], t3),
|
||||
fq2.F.Neg(fq2.F.Mul(a[1], t3)),
|
||||
}
|
||||
}
|
||||
|
||||
// Div performs a division on the Fq2
|
||||
func (fq2 Fq2) Div(a, b [2]*big.Int) [2]*big.Int {
|
||||
return fq2.Mul(a, fq2.Inverse(b))
|
||||
}
|
||||
|
||||
// Square performs a square operation on the Fq2
|
||||
func (fq2 Fq2) Square(a [2]*big.Int) [2]*big.Int {
|
||||
// https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf , complex squaring
|
||||
ab := fq2.F.Mul(a[0], a[1])
|
||||
return [2]*big.Int{
|
||||
fq2.F.Sub(
|
||||
fq2.F.Mul(
|
||||
fq2.F.Add(a[0], a[1]),
|
||||
fq2.F.Add(
|
||||
a[0],
|
||||
fq2.mulByNonResidue(a[1]))),
|
||||
fq2.F.Add(
|
||||
ab,
|
||||
fq2.mulByNonResidue(ab))),
|
||||
fq2.F.Add(ab, ab),
|
||||
}
|
||||
}
|
||||
|
||||
func (fq2 Fq2) IsZero(a [2]*big.Int) bool {
|
||||
return fq2.F.IsZero(a[0]) && fq2.F.IsZero(a[1])
|
||||
}
|
||||
|
||||
func (fq2 Fq2) Affine(a [2]*big.Int) [2]*big.Int {
|
||||
return [2]*big.Int{
|
||||
fq2.F.Affine(a[0]),
|
||||
fq2.F.Affine(a[1]),
|
||||
}
|
||||
}
|
||||
func (fq2 Fq2) Equal(a, b [2]*big.Int) bool {
|
||||
return fq2.F.Equal(a[0], b[0]) && fq2.F.Equal(a[1], b[1])
|
||||
}
|
||||
|
||||
func (fq2 Fq2) Copy(a [2]*big.Int) [2]*big.Int {
|
||||
return [2]*big.Int{
|
||||
fq2.F.Copy(a[0]),
|
||||
fq2.F.Copy(a[1]),
|
||||
}
|
||||
}
|
||||
192
bn128/fq6.go
192
bn128/fq6.go
@@ -1,192 +0,0 @@
|
||||
package bn128
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// Fq6 is Field 6
|
||||
type Fq6 struct {
|
||||
F Fq2
|
||||
NonResidue [2]*big.Int
|
||||
}
|
||||
|
||||
// NewFq6 generates a new Fq6
|
||||
func NewFq6(f Fq2, nonResidue [2]*big.Int) Fq6 {
|
||||
fq6 := Fq6{
|
||||
f,
|
||||
nonResidue,
|
||||
}
|
||||
return fq6
|
||||
}
|
||||
|
||||
// Zero returns a Zero value on the Fq6
|
||||
func (fq6 Fq6) Zero() [3][2]*big.Int {
|
||||
return [3][2]*big.Int{fq6.F.Zero(), fq6.F.Zero(), fq6.F.Zero()}
|
||||
}
|
||||
|
||||
// One returns a One value on the Fq6
|
||||
func (fq6 Fq6) One() [3][2]*big.Int {
|
||||
return [3][2]*big.Int{fq6.F.One(), fq6.F.Zero(), fq6.F.Zero()}
|
||||
}
|
||||
|
||||
func (fq6 Fq6) mulByNonResidue(a [2]*big.Int) [2]*big.Int {
|
||||
return fq6.F.Mul(fq6.NonResidue, a)
|
||||
}
|
||||
|
||||
// Add performs an addition on the Fq6
|
||||
func (fq6 Fq6) Add(a, b [3][2]*big.Int) [3][2]*big.Int {
|
||||
return [3][2]*big.Int{
|
||||
fq6.F.Add(a[0], b[0]),
|
||||
fq6.F.Add(a[1], b[1]),
|
||||
fq6.F.Add(a[2], b[2]),
|
||||
}
|
||||
}
|
||||
|
||||
func (fq6 Fq6) Double(a [3][2]*big.Int) [3][2]*big.Int {
|
||||
return fq6.Add(a, a)
|
||||
}
|
||||
|
||||
// Sub performs a subtraction on the Fq6
|
||||
func (fq6 Fq6) Sub(a, b [3][2]*big.Int) [3][2]*big.Int {
|
||||
return [3][2]*big.Int{
|
||||
fq6.F.Sub(a[0], b[0]),
|
||||
fq6.F.Sub(a[1], b[1]),
|
||||
fq6.F.Sub(a[2], b[2]),
|
||||
}
|
||||
}
|
||||
|
||||
// Neg performs a negation on the Fq6
|
||||
func (fq6 Fq6) Neg(a [3][2]*big.Int) [3][2]*big.Int {
|
||||
return fq6.Sub(fq6.Zero(), a)
|
||||
}
|
||||
|
||||
// Mul performs a multiplication on the Fq6
|
||||
func (fq6 Fq6) Mul(a, b [3][2]*big.Int) [3][2]*big.Int {
|
||||
v0 := fq6.F.Mul(a[0], b[0])
|
||||
v1 := fq6.F.Mul(a[1], b[1])
|
||||
v2 := fq6.F.Mul(a[2], b[2])
|
||||
return [3][2]*big.Int{
|
||||
fq6.F.Add(
|
||||
v0,
|
||||
fq6.mulByNonResidue(
|
||||
fq6.F.Sub(
|
||||
fq6.F.Mul(
|
||||
fq6.F.Add(a[1], a[2]),
|
||||
fq6.F.Add(b[1], b[2])),
|
||||
fq6.F.Add(v1, v2)))),
|
||||
|
||||
fq6.F.Add(
|
||||
fq6.F.Sub(
|
||||
fq6.F.Mul(
|
||||
fq6.F.Add(a[0], a[1]),
|
||||
fq6.F.Add(b[0], b[1])),
|
||||
fq6.F.Add(v0, v1)),
|
||||
fq6.mulByNonResidue(v2)),
|
||||
|
||||
fq6.F.Add(
|
||||
fq6.F.Sub(
|
||||
fq6.F.Mul(
|
||||
fq6.F.Add(a[0], a[2]),
|
||||
fq6.F.Add(b[0], b[2])),
|
||||
fq6.F.Add(v0, v2)),
|
||||
v1),
|
||||
}
|
||||
}
|
||||
|
||||
func (fq6 Fq6) MulScalar(base [3][2]*big.Int, e *big.Int) [3][2]*big.Int {
|
||||
// for more possible implementations see g2.go file, at the function g2.MulScalar()
|
||||
|
||||
res := fq6.Zero()
|
||||
rem := e
|
||||
exp := base
|
||||
|
||||
for !bytes.Equal(rem.Bytes(), big.NewInt(int64(0)).Bytes()) {
|
||||
// if rem % 2 == 1
|
||||
if bytes.Equal(new(big.Int).Rem(rem, big.NewInt(int64(2))).Bytes(), big.NewInt(int64(1)).Bytes()) {
|
||||
res = fq6.Add(res, exp)
|
||||
}
|
||||
exp = fq6.Double(exp)
|
||||
rem = rem.Rsh(rem, 1) // rem = rem >> 1
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
// Inverse returns the inverse on the Fq6
|
||||
func (fq6 Fq6) Inverse(a [3][2]*big.Int) [3][2]*big.Int {
|
||||
t0 := fq6.F.Square(a[0])
|
||||
t1 := fq6.F.Square(a[1])
|
||||
t2 := fq6.F.Square(a[2])
|
||||
t3 := fq6.F.Mul(a[0], a[1])
|
||||
t4 := fq6.F.Mul(a[0], a[2])
|
||||
t5 := fq6.F.Mul(a[1], a[2])
|
||||
|
||||
c0 := fq6.F.Sub(t0, fq6.mulByNonResidue(t5))
|
||||
c1 := fq6.F.Sub(fq6.mulByNonResidue(t2), t3)
|
||||
c2 := fq6.F.Sub(t1, t4)
|
||||
|
||||
t6 := fq6.F.Inverse(
|
||||
fq6.F.Add(
|
||||
fq6.F.Mul(a[0], c0),
|
||||
fq6.mulByNonResidue(
|
||||
fq6.F.Add(
|
||||
fq6.F.Mul(a[2], c1),
|
||||
fq6.F.Mul(a[1], c2)))))
|
||||
return [3][2]*big.Int{
|
||||
fq6.F.Mul(t6, c0),
|
||||
fq6.F.Mul(t6, c1),
|
||||
fq6.F.Mul(t6, c2),
|
||||
}
|
||||
}
|
||||
|
||||
// Div performs a division on the Fq6
|
||||
func (fq6 Fq6) Div(a, b [3][2]*big.Int) [3][2]*big.Int {
|
||||
return fq6.Mul(a, fq6.Inverse(b))
|
||||
}
|
||||
|
||||
// Square performs a square operation on the Fq6
|
||||
func (fq6 Fq6) Square(a [3][2]*big.Int) [3][2]*big.Int {
|
||||
s0 := fq6.F.Square(a[0])
|
||||
ab := fq6.F.Mul(a[0], a[1])
|
||||
s1 := fq6.F.Add(ab, ab)
|
||||
s2 := fq6.F.Square(
|
||||
fq6.F.Add(
|
||||
fq6.F.Sub(a[0], a[1]),
|
||||
a[2]))
|
||||
bc := fq6.F.Mul(a[1], a[2])
|
||||
s3 := fq6.F.Add(bc, bc)
|
||||
s4 := fq6.F.Square(a[2])
|
||||
|
||||
return [3][2]*big.Int{
|
||||
fq6.F.Add(
|
||||
s0,
|
||||
fq6.mulByNonResidue(s3)),
|
||||
fq6.F.Add(
|
||||
s1,
|
||||
fq6.mulByNonResidue(s4)),
|
||||
fq6.F.Sub(
|
||||
fq6.F.Add(
|
||||
fq6.F.Add(s1, s2),
|
||||
s3),
|
||||
fq6.F.Add(s0, s4)),
|
||||
}
|
||||
}
|
||||
|
||||
func (fq6 Fq6) Affine(a [3][2]*big.Int) [3][2]*big.Int {
|
||||
return [3][2]*big.Int{
|
||||
fq6.F.Affine(a[0]),
|
||||
fq6.F.Affine(a[1]),
|
||||
fq6.F.Affine(a[2]),
|
||||
}
|
||||
}
|
||||
func (fq6 Fq6) Equal(a, b [3][2]*big.Int) bool {
|
||||
return fq6.F.Equal(a[0], b[0]) && fq6.F.Equal(a[1], b[1]) && fq6.F.Equal(a[2], b[2])
|
||||
}
|
||||
|
||||
func (fq6 Fq6) Copy(a [3][2]*big.Int) [3][2]*big.Int {
|
||||
return [3][2]*big.Int{
|
||||
fq6.F.Copy(a[0]),
|
||||
fq6.F.Copy(a[1]),
|
||||
fq6.F.Copy(a[2]),
|
||||
}
|
||||
}
|
||||
@@ -1,160 +0,0 @@
|
||||
package bn128
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
func iToBig(a int) *big.Int {
|
||||
return big.NewInt(int64(a))
|
||||
}
|
||||
|
||||
func iiToBig(a, b int) [2]*big.Int {
|
||||
return [2]*big.Int{iToBig(a), iToBig(b)}
|
||||
}
|
||||
|
||||
func iiiToBig(a, b int) [2]*big.Int {
|
||||
return [2]*big.Int{iToBig(a), iToBig(b)}
|
||||
}
|
||||
|
||||
func TestFq1(t *testing.T) {
|
||||
fq1 := NewFq(iToBig(7))
|
||||
|
||||
res := fq1.Add(iToBig(4), iToBig(4))
|
||||
assert.Equal(t, iToBig(1), fq1.Affine(res))
|
||||
|
||||
res = fq1.Double(iToBig(5))
|
||||
assert.Equal(t, iToBig(3), fq1.Affine(res))
|
||||
|
||||
res = fq1.Sub(iToBig(5), iToBig(7))
|
||||
assert.Equal(t, iToBig(5), fq1.Affine(res))
|
||||
|
||||
res = fq1.Neg(iToBig(5))
|
||||
assert.Equal(t, iToBig(2), fq1.Affine(res))
|
||||
|
||||
res = fq1.Mul(iToBig(5), iToBig(11))
|
||||
assert.Equal(t, iToBig(6), fq1.Affine(res))
|
||||
|
||||
res = fq1.Inverse(iToBig(4))
|
||||
assert.Equal(t, iToBig(2), res)
|
||||
|
||||
res = fq1.Square(iToBig(5))
|
||||
assert.Equal(t, iToBig(4), res)
|
||||
}
|
||||
|
||||
func TestFq2(t *testing.T) {
|
||||
fq1 := NewFq(iToBig(7))
|
||||
nonResidueFq2str := "-1" // i/j
|
||||
nonResidueFq2, ok := new(big.Int).SetString(nonResidueFq2str, 10)
|
||||
assert.True(t, ok)
|
||||
assert.Equal(t, nonResidueFq2.String(), nonResidueFq2str)
|
||||
|
||||
fq2 := Fq2{fq1, nonResidueFq2}
|
||||
|
||||
res := fq2.Add(iiToBig(4, 4), iiToBig(3, 4))
|
||||
assert.Equal(t, iiToBig(0, 1), fq2.Affine(res))
|
||||
|
||||
res = fq2.Double(iiToBig(5, 3))
|
||||
assert.Equal(t, iiToBig(3, 6), fq2.Affine(res))
|
||||
|
||||
res = fq2.Sub(iiToBig(5, 3), iiToBig(7, 2))
|
||||
assert.Equal(t, iiToBig(5, 1), fq2.Affine(res))
|
||||
|
||||
res = fq2.Neg(iiToBig(4, 4))
|
||||
assert.Equal(t, iiToBig(3, 3), fq2.Affine(res))
|
||||
|
||||
res = fq2.Mul(iiToBig(4, 4), iiToBig(3, 4))
|
||||
assert.Equal(t, iiToBig(3, 0), fq2.Affine(res))
|
||||
|
||||
res = fq2.Inverse(iiToBig(4, 4))
|
||||
assert.Equal(t, iiToBig(1, 6), fq2.Affine(res))
|
||||
|
||||
res = fq2.Square(iiToBig(4, 4))
|
||||
assert.Equal(t, iiToBig(0, 4), fq2.Affine(res))
|
||||
res2 := fq2.Mul(iiToBig(4, 4), iiToBig(4, 4))
|
||||
assert.Equal(t, fq2.Affine(res), fq2.Affine(res2))
|
||||
assert.True(t, fq2.Equal(res, res2))
|
||||
|
||||
res = fq2.Square(iiToBig(3, 5))
|
||||
assert.Equal(t, iiToBig(5, 2), fq2.Affine(res))
|
||||
res2 = fq2.Mul(iiToBig(3, 5), iiToBig(3, 5))
|
||||
assert.Equal(t, fq2.Affine(res), fq2.Affine(res2))
|
||||
}
|
||||
|
||||
func TestFq6(t *testing.T) {
|
||||
bn128, err := NewBn128()
|
||||
assert.Nil(t, err)
|
||||
|
||||
a := [3][2]*big.Int{
|
||||
iiToBig(1, 2),
|
||||
iiToBig(3, 4),
|
||||
iiToBig(5, 6)}
|
||||
b := [3][2]*big.Int{
|
||||
iiToBig(12, 11),
|
||||
iiToBig(10, 9),
|
||||
iiToBig(8, 7)}
|
||||
|
||||
mulRes := bn128.Fq6.Mul(a, b)
|
||||
divRes := bn128.Fq6.Div(mulRes, b)
|
||||
assert.Equal(t, bn128.Fq6.Affine(a), bn128.Fq6.Affine(divRes))
|
||||
}
|
||||
|
||||
func TestFq12(t *testing.T) {
|
||||
q, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208583", 10) // i
|
||||
assert.True(t, ok)
|
||||
fq1 := NewFq(q)
|
||||
nonResidueFq2, ok := new(big.Int).SetString("21888242871839275222246405745257275088696311157297823662689037894645226208582", 10) // i
|
||||
assert.True(t, ok)
|
||||
nonResidueFq6 := iiToBig(9, 1)
|
||||
|
||||
fq2 := Fq2{fq1, nonResidueFq2}
|
||||
fq6 := Fq6{fq2, nonResidueFq6}
|
||||
fq12 := Fq12{fq6, fq2, nonResidueFq6}
|
||||
|
||||
a := [2][3][2]*big.Int{
|
||||
{
|
||||
iiToBig(1, 2),
|
||||
iiToBig(3, 4),
|
||||
iiToBig(5, 6),
|
||||
},
|
||||
{
|
||||
iiToBig(7, 8),
|
||||
iiToBig(9, 10),
|
||||
iiToBig(11, 12),
|
||||
},
|
||||
}
|
||||
b := [2][3][2]*big.Int{
|
||||
{
|
||||
iiToBig(12, 11),
|
||||
iiToBig(10, 9),
|
||||
iiToBig(8, 7),
|
||||
},
|
||||
{
|
||||
iiToBig(6, 5),
|
||||
iiToBig(4, 3),
|
||||
iiToBig(2, 1),
|
||||
},
|
||||
}
|
||||
|
||||
res := fq12.Add(a, b)
|
||||
assert.Equal(t,
|
||||
[2][3][2]*big.Int{
|
||||
{
|
||||
iiToBig(13, 13),
|
||||
iiToBig(13, 13),
|
||||
iiToBig(13, 13),
|
||||
},
|
||||
{
|
||||
iiToBig(13, 13),
|
||||
iiToBig(13, 13),
|
||||
iiToBig(13, 13),
|
||||
},
|
||||
},
|
||||
res)
|
||||
|
||||
mulRes := fq12.Mul(a, b)
|
||||
divRes := fq12.Div(mulRes, b)
|
||||
assert.Equal(t, fq12.Affine(a), fq12.Affine(divRes))
|
||||
}
|
||||
@@ -2,14 +2,16 @@ package bn128
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
|
||||
"github.com/arnaucube/go-snark/fields"
|
||||
)
|
||||
|
||||
type G1 struct {
|
||||
F Fq
|
||||
F fields.Fq
|
||||
G [3]*big.Int
|
||||
}
|
||||
|
||||
func NewG1(f Fq, g [2]*big.Int) G1 {
|
||||
func NewG1(f fields.Fq, g [2]*big.Int) G1 {
|
||||
var g1 G1
|
||||
g1.F = f
|
||||
g1.G = [3]*big.Int{
|
||||
|
||||
@@ -2,14 +2,16 @@ package bn128
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
|
||||
"github.com/arnaucube/go-snark/fields"
|
||||
)
|
||||
|
||||
type G2 struct {
|
||||
F Fq2
|
||||
F fields.Fq2
|
||||
G [3][2]*big.Int
|
||||
}
|
||||
|
||||
func NewG2(f Fq2, g [2][2]*big.Int) G2 {
|
||||
func NewG2(f fields.Fq2, g [2][2]*big.Int) G2 {
|
||||
var g2 G2
|
||||
g2.F = f
|
||||
g2.G = [3][2]*big.Int{
|
||||
|
||||
Reference in New Issue
Block a user