r1cs to qap over finite field

This commit is contained in:
arnaucube
2018-12-02 19:13:18 +01:00
parent e889b8b7dc
commit b1df15a497
16 changed files with 1060 additions and 45 deletions

157
r1csqap/r1csqap.go Normal file
View File

@@ -0,0 +1,157 @@
package r1csqap
import (
"math/big"
"github.com/arnaucube/go-snark/fields"
)
func Transpose(matrix [][]*big.Int) [][]*big.Int {
var r [][]*big.Int
for i := 0; i < len(matrix[0]); i++ {
var row []*big.Int
for j := 0; j < len(matrix); j++ {
row = append(row, matrix[j][i])
}
r = append(r, row)
}
return r
}
func ArrayOfBigZeros(num int) []*big.Int {
bigZero := big.NewInt(int64(0))
var r []*big.Int
for i := 0; i < num; i++ {
r = append(r, bigZero)
}
return r
}
type PolynomialField struct {
F fields.Fq
}
func NewPolynomialField(f fields.Fq) PolynomialField {
return PolynomialField{
f,
}
}
func (pf PolynomialField) Mul(a, b []*big.Int) []*big.Int {
r := ArrayOfBigZeros(len(a) + len(b) - 1)
for i := 0; i < len(a); i++ {
for j := 0; j < len(b); j++ {
r[i+j] = pf.F.Add(
r[i+j],
pf.F.Mul(a[i], b[j]))
}
}
return r
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func (pf PolynomialField) Add(a, b []*big.Int) []*big.Int {
r := ArrayOfBigZeros(max(len(a), len(b)))
for i := 0; i < len(a); i++ {
r[i] = pf.F.Add(r[i], a[i])
}
for i := 0; i < len(b); i++ {
r[i] = pf.F.Add(r[i], b[i])
}
return r
}
func (pf PolynomialField) Sub(a, b []*big.Int) []*big.Int {
r := ArrayOfBigZeros(max(len(a), len(b)))
for i := 0; i < len(a); i++ {
r[i] = pf.F.Add(r[i], a[i])
}
for i := 0; i < len(b); i++ {
// bneg := pf.F.Mul(b[i], big.NewInt(int64(-1)))
// r[i] = pf.F.Add(r[i], bneg)
r[i] = pf.F.Sub(r[i], b[i])
}
return r
}
// func FloatPow(a *big.Int, e int) *big.Int {
// if e == 0 {
// return big.NewInt(int64(1))
// }
// result := new(big.Int).Copy(a)
// for i := 0; i < e-1; i++ {
// result = new(big.Int).Mul(result, a)
// }
// return result
// }
func (pf PolynomialField) Eval(v []*big.Int, x *big.Int) *big.Int {
r := big.NewInt(int64(0))
for i := 0; i < len(v); i++ {
// xi := FloatPow(x, i)
xi := pf.F.Exp(x, big.NewInt(int64(i)))
elem := pf.F.Mul(v[i], xi)
r = pf.F.Add(r, elem)
}
return r
}
func (pf PolynomialField) NewPolZeroAt(pointPos, totalPoints int, height *big.Int) []*big.Int {
fac := 1
for i := 1; i < totalPoints+1; i++ {
if i != pointPos {
fac = fac * (pointPos - i)
}
}
facBig := big.NewInt(int64(fac))
hf := pf.F.Div(height, facBig)
r := []*big.Int{hf}
for i := 1; i < totalPoints+1; i++ {
if i != pointPos {
ineg := big.NewInt(int64(-i))
b1 := big.NewInt(int64(1))
r = pf.Mul(r, []*big.Int{ineg, b1})
}
}
return r
}
func (pf PolynomialField) LagrangeInterpolation(v []*big.Int) []*big.Int {
// https://en.wikipedia.org/wiki/Lagrange_polynomial
var r []*big.Int
for i := 0; i < len(v); i++ {
r = pf.Add(r, pf.NewPolZeroAt(i+1, len(v), v[i]))
}
//
return r
}
func (pf PolynomialField) R1CSToQAP(a, b, c [][]*big.Int) ([][]*big.Int, [][]*big.Int, [][]*big.Int, []*big.Int) {
aT := Transpose(a)
bT := Transpose(b)
cT := Transpose(c)
var alpha [][]*big.Int
for i := 0; i < len(aT); i++ {
alpha = append(alpha, pf.LagrangeInterpolation(aT[i]))
}
var beta [][]*big.Int
for i := 0; i < len(bT); i++ {
beta = append(beta, pf.LagrangeInterpolation(bT[i]))
}
var gamma [][]*big.Int
for i := 0; i < len(cT); i++ {
gamma = append(gamma, pf.LagrangeInterpolation(cT[i]))
}
z := []*big.Int{big.NewInt(int64(1))}
for i := 1; i < len(aT[0])+1; i++ {
ineg := big.NewInt(int64(-i))
b1 := big.NewInt(int64(1))
z = pf.Mul(z, []*big.Int{ineg, b1})
}
return alpha, beta, gamma, z
}

136
r1csqap/r1csqap_test.go Normal file
View File

@@ -0,0 +1,136 @@
package r1csqap
import (
"bytes"
"fmt"
"math/big"
"testing"
"github.com/arnaucube/go-snark/fields"
"github.com/stretchr/testify/assert"
)
func TestTranspose(t *testing.T) {
b0 := big.NewInt(int64(0))
b1 := big.NewInt(int64(1))
bFive := big.NewInt(int64(5))
a := [][]*big.Int{
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b0, b0, b0, b1, b0, b0},
[]*big.Int{b0, b1, b0, b0, b1, b0},
[]*big.Int{bFive, b0, b0, b0, b0, b1},
}
aT := Transpose(a)
assert.Equal(t, aT, [][]*big.Int{
[]*big.Int{b0, b0, b0, bFive},
[]*big.Int{b1, b0, b1, b0},
[]*big.Int{b0, b0, b0, b0},
[]*big.Int{b0, b1, b0, b0},
[]*big.Int{b0, b0, b1, b0},
[]*big.Int{b0, b0, b0, b1},
})
}
func TestPol(t *testing.T) {
b0 := big.NewInt(int64(0))
b1 := big.NewInt(int64(1))
b3 := big.NewInt(int64(3))
b4 := big.NewInt(int64(4))
b5 := big.NewInt(int64(5))
b6 := big.NewInt(int64(6))
b16 := big.NewInt(int64(16))
a := []*big.Int{b1, b0, b5}
b := []*big.Int{b3, b0, b1}
// new Finite Field
r, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
assert.True(nil, ok)
f := fields.NewFq(r)
// new Polynomial Field
pf := NewPolynomialField(f)
// polynomial multiplication
o := pf.Mul(a, b)
assert.Equal(t, o, []*big.Int{b3, b0, b16, b0, b5})
// polynomial addition
o = pf.Add(a, b)
assert.Equal(t, o, []*big.Int{b4, b0, b6})
// polynomial subtraction
o1 := pf.Sub(a, b)
o2 := pf.Sub(b, a)
o = pf.Add(o1, o2)
assert.True(t, bytes.Equal(b0.Bytes(), o[0].Bytes()))
assert.True(t, bytes.Equal(b0.Bytes(), o[1].Bytes()))
assert.True(t, bytes.Equal(b0.Bytes(), o[2].Bytes()))
c := []*big.Int{b5, b6, b1}
d := []*big.Int{b1, b3}
o = pf.Sub(c, d)
assert.Equal(t, o, []*big.Int{b4, b3, b1})
// NewPolZeroAt
o = pf.NewPolZeroAt(3, 4, b4)
assert.Equal(t, pf.Eval(o, big.NewInt(3)), b4)
o = pf.NewPolZeroAt(2, 4, b3)
assert.Equal(t, pf.Eval(o, big.NewInt(2)), b3)
}
func TestLagrangeInterpolation(t *testing.T) {
// new Finite Field
r, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
assert.True(nil, ok)
f := fields.NewFq(r)
// new Polynomial Field
pf := NewPolynomialField(f)
b0 := big.NewInt(int64(0))
b5 := big.NewInt(int64(5))
a := []*big.Int{b0, b0, b0, b5}
alpha := pf.LagrangeInterpolation(a)
assert.Equal(t, pf.Eval(alpha, big.NewInt(int64(4))), b5)
aux := pf.Eval(alpha, big.NewInt(int64(3))).Int64()
assert.Equal(t, aux, int64(0))
}
func TestR1CSToQAP(t *testing.T) {
// new Finite Field
r, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
assert.True(nil, ok)
f := fields.NewFq(r)
// new Polynomial Field
pf := NewPolynomialField(f)
b0 := big.NewInt(int64(0))
b1 := big.NewInt(int64(1))
b5 := big.NewInt(int64(5))
a := [][]*big.Int{
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b0, b0, b0, b1, b0, b0},
[]*big.Int{b0, b1, b0, b0, b1, b0},
[]*big.Int{b5, b0, b0, b0, b0, b1},
}
b := [][]*big.Int{
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b1, b0, b0, b0, b0, b0},
[]*big.Int{b1, b0, b0, b0, b0, b0},
}
c := [][]*big.Int{
[]*big.Int{b0, b0, b0, b1, b0, b0},
[]*big.Int{b0, b0, b0, b0, b1, b0},
[]*big.Int{b0, b0, b0, b0, b0, b1},
[]*big.Int{b0, b0, b1, b0, b0, b0},
}
alpha, beta, gamma, z := pf.R1CSToQAP(a, b, c)
fmt.Println(alpha)
fmt.Println(beta)
fmt.Println(gamma)
fmt.Println(z)
}