You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

160 lines
3.5 KiB

package fields
import (
"math/big"
)
// Fq2 is Field 2
type Fq2 struct {
F Fq
NonResidue *big.Int
}
// NewFq2 generates a new Fq2
func NewFq2(f Fq, nonResidue *big.Int) Fq2 {
fq2 := Fq2{
f,
nonResidue,
}
return fq2
}
// Zero returns a Zero value on the Fq2
func (fq2 Fq2) Zero() [2]*big.Int {
return [2]*big.Int{fq2.F.Zero(), fq2.F.Zero()}
}
// One returns a One value on the Fq2
func (fq2 Fq2) One() [2]*big.Int {
return [2]*big.Int{fq2.F.One(), fq2.F.Zero()}
}
func (fq2 Fq2) mulByNonResidue(a *big.Int) *big.Int {
return fq2.F.Mul(fq2.NonResidue, a)
}
// Add performs an addition on the Fq2
func (fq2 Fq2) Add(a, b [2]*big.Int) [2]*big.Int {
return [2]*big.Int{
fq2.F.Add(a[0], b[0]),
fq2.F.Add(a[1], b[1]),
}
}
// Double performs a doubling on the Fq2
func (fq2 Fq2) Double(a [2]*big.Int) [2]*big.Int {
return fq2.Add(a, a)
}
// Sub performs a subtraction on the Fq2
func (fq2 Fq2) Sub(a, b [2]*big.Int) [2]*big.Int {
return [2]*big.Int{
fq2.F.Sub(a[0], b[0]),
fq2.F.Sub(a[1], b[1]),
}
}
// Neg performs a negation on the Fq2
func (fq2 Fq2) Neg(a [2]*big.Int) [2]*big.Int {
return fq2.Sub(fq2.Zero(), a)
}
// Mul performs a multiplication on the Fq2
func (fq2 Fq2) Mul(a, b [2]*big.Int) [2]*big.Int {
// Multiplication and Squaring on Pairing-Friendly.pdf; Section 3 (Karatsuba)
// https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf
v0 := fq2.F.Mul(a[0], b[0])
v1 := fq2.F.Mul(a[1], b[1])
return [2]*big.Int{
fq2.F.Add(v0, fq2.mulByNonResidue(v1)),
fq2.F.Sub(
fq2.F.Mul(
fq2.F.Add(a[0], a[1]),
fq2.F.Add(b[0], b[1])),
fq2.F.Add(v0, v1)),
}
}
// MulScalar is ...
func (fq2 Fq2) MulScalar(p [2]*big.Int, e *big.Int) [2]*big.Int {
// for more possible implementations see g2.go file, at the function g2.MulScalar()
q := fq2.Zero()
d := fq2.F.Copy(e)
r := p
foundone := false
for i := d.BitLen(); i >= 0; i-- {
if foundone {
q = fq2.Double(q)
}
if d.Bit(i) == 1 {
foundone = true
q = fq2.Add(q, r)
}
}
return q
}
// Inverse returns the inverse on the Fq2
func (fq2 Fq2) Inverse(a [2]*big.Int) [2]*big.Int {
// High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves .pdf
// https://eprint.iacr.org/2010/354.pdf , algorithm 8
t0 := fq2.F.Square(a[0])
t1 := fq2.F.Square(a[1])
t2 := fq2.F.Sub(t0, fq2.mulByNonResidue(t1))
t3 := fq2.F.Inverse(t2)
return [2]*big.Int{
fq2.F.Mul(a[0], t3),
fq2.F.Neg(fq2.F.Mul(a[1], t3)),
}
}
// Div performs a division on the Fq2
func (fq2 Fq2) Div(a, b [2]*big.Int) [2]*big.Int {
return fq2.Mul(a, fq2.Inverse(b))
}
// Square performs a square operation on the Fq2
func (fq2 Fq2) Square(a [2]*big.Int) [2]*big.Int {
// https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf , complex squaring
ab := fq2.F.Mul(a[0], a[1])
return [2]*big.Int{
fq2.F.Sub(
fq2.F.Mul(
fq2.F.Add(a[0], a[1]),
fq2.F.Add(
a[0],
fq2.mulByNonResidue(a[1]))),
fq2.F.Add(
ab,
fq2.mulByNonResidue(ab))),
fq2.F.Add(ab, ab),
}
}
// IsZero is ...
func (fq2 Fq2) IsZero(a [2]*big.Int) bool {
return fq2.F.IsZero(a[0]) && fq2.F.IsZero(a[1])
}
// Affine is ...
func (fq2 Fq2) Affine(a [2]*big.Int) [2]*big.Int {
return [2]*big.Int{
fq2.F.Affine(a[0]),
fq2.F.Affine(a[1]),
}
}
// Equal is ...
func (fq2 Fq2) Equal(a, b [2]*big.Int) bool {
return fq2.F.Equal(a[0], b[0]) && fq2.F.Equal(a[1], b[1])
}
// Copy is ...
func (fq2 Fq2) Copy(a [2]*big.Int) [2]*big.Int {
return [2]*big.Int{
fq2.F.Copy(a[0]),
fq2.F.Copy(a[1]),
}
}