|
|
package fields
import ( "math/big" )
// Fq2 is Field 2
type Fq2 struct { F Fq NonResidue *big.Int }
// NewFq2 generates a new Fq2
func NewFq2(f Fq, nonResidue *big.Int) Fq2 { fq2 := Fq2{ f, nonResidue, } return fq2 }
// Zero returns a Zero value on the Fq2
func (fq2 Fq2) Zero() [2]*big.Int { return [2]*big.Int{fq2.F.Zero(), fq2.F.Zero()} }
// One returns a One value on the Fq2
func (fq2 Fq2) One() [2]*big.Int { return [2]*big.Int{fq2.F.One(), fq2.F.Zero()} }
func (fq2 Fq2) mulByNonResidue(a *big.Int) *big.Int { return fq2.F.Mul(fq2.NonResidue, a) }
// Add performs an addition on the Fq2
func (fq2 Fq2) Add(a, b [2]*big.Int) [2]*big.Int { return [2]*big.Int{ fq2.F.Add(a[0], b[0]), fq2.F.Add(a[1], b[1]), } }
// Double performs a doubling on the Fq2
func (fq2 Fq2) Double(a [2]*big.Int) [2]*big.Int { return fq2.Add(a, a) }
// Sub performs a subtraction on the Fq2
func (fq2 Fq2) Sub(a, b [2]*big.Int) [2]*big.Int { return [2]*big.Int{ fq2.F.Sub(a[0], b[0]), fq2.F.Sub(a[1], b[1]), } }
// Neg performs a negation on the Fq2
func (fq2 Fq2) Neg(a [2]*big.Int) [2]*big.Int { return fq2.Sub(fq2.Zero(), a) }
// Mul performs a multiplication on the Fq2
func (fq2 Fq2) Mul(a, b [2]*big.Int) [2]*big.Int { // Multiplication and Squaring on Pairing-Friendly.pdf; Section 3 (Karatsuba)
// https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf
v0 := fq2.F.Mul(a[0], b[0]) v1 := fq2.F.Mul(a[1], b[1]) return [2]*big.Int{ fq2.F.Add(v0, fq2.mulByNonResidue(v1)), fq2.F.Sub( fq2.F.Mul( fq2.F.Add(a[0], a[1]), fq2.F.Add(b[0], b[1])), fq2.F.Add(v0, v1)), } }
// MulScalar is ...
func (fq2 Fq2) MulScalar(p [2]*big.Int, e *big.Int) [2]*big.Int { // for more possible implementations see g2.go file, at the function g2.MulScalar()
q := fq2.Zero() d := fq2.F.Copy(e) r := p
foundone := false for i := d.BitLen(); i >= 0; i-- { if foundone { q = fq2.Double(q) } if d.Bit(i) == 1 { foundone = true q = fq2.Add(q, r) } } return q }
// Inverse returns the inverse on the Fq2
func (fq2 Fq2) Inverse(a [2]*big.Int) [2]*big.Int { // High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves .pdf
// https://eprint.iacr.org/2010/354.pdf , algorithm 8
t0 := fq2.F.Square(a[0]) t1 := fq2.F.Square(a[1]) t2 := fq2.F.Sub(t0, fq2.mulByNonResidue(t1)) t3 := fq2.F.Inverse(t2) return [2]*big.Int{ fq2.F.Mul(a[0], t3), fq2.F.Neg(fq2.F.Mul(a[1], t3)), } }
// Div performs a division on the Fq2
func (fq2 Fq2) Div(a, b [2]*big.Int) [2]*big.Int { return fq2.Mul(a, fq2.Inverse(b)) }
// Square performs a square operation on the Fq2
func (fq2 Fq2) Square(a [2]*big.Int) [2]*big.Int { // https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf , complex squaring
ab := fq2.F.Mul(a[0], a[1]) return [2]*big.Int{ fq2.F.Sub( fq2.F.Mul( fq2.F.Add(a[0], a[1]), fq2.F.Add( a[0], fq2.mulByNonResidue(a[1]))), fq2.F.Add( ab, fq2.mulByNonResidue(ab))), fq2.F.Add(ab, ab), } }
// IsZero is ...
func (fq2 Fq2) IsZero(a [2]*big.Int) bool { return fq2.F.IsZero(a[0]) && fq2.F.IsZero(a[1]) }
// Affine is ...
func (fq2 Fq2) Affine(a [2]*big.Int) [2]*big.Int { return [2]*big.Int{ fq2.F.Affine(a[0]), fq2.F.Affine(a[1]), } }
// Equal is ...
func (fq2 Fq2) Equal(a, b [2]*big.Int) bool { return fq2.F.Equal(a[0], b[0]) && fq2.F.Equal(a[1], b[1]) }
// Copy is ...
func (fq2 Fq2) Copy(a [2]*big.Int) [2]*big.Int { return [2]*big.Int{ fq2.F.Copy(a[0]), fq2.F.Copy(a[1]), } }
|