go-snark 
zkSNARK library implementation in Go
Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdfPinocchio: Nearly practical verifiable computation, Bryan Parno, Craig Gentry, Jon Howell, Mariana Raykova https://eprint.iacr.org/2013/279.pdf
Caution
Implementation from scratch in Go to understand the concepts. Do not use in production.
Not finished, implementing this in my free time to understand it better, so I don't have much time.
Current implementation status:
- Finite Fields (1, 2, 6, 12) operations
- G1 and G2 curve operations
- BN128 Pairing
- circuit code compiler
- code to flat code
- flat code compiler
- circuit to R1CS
- polynomial operations
- R1CS to QAP
- generate trusted setup
- generate proofs
- verify proofs with BN128 pairing
Usage
zkSnark
bn128 (more details: https://github.com/arnaucube/go-snark/tree/master/bn128)
Finite Fields operations
R1CS to QAP (more details: https://github.com/arnaucube/go-snark/tree/master/r1csqap)
Circuit Compiler
Library usage
Example:
// compile circuit and get the R1CS
flatCode := `
func test(x):
aux = x*x
y = aux*x
z = x + y
out = z + 5
`
// parse the code
parser := circuitcompiler.NewParser(strings.NewReader(flatCode))
circuit, err := parser.Parse()
assert.Nil(t, err)
fmt.Println(circuit)
// witness
b3 := big.NewInt(int64(3))
inputs := []*big.Int{b3}
w := circuit.CalculateWitness(inputs)
fmt.Println("\nwitness", w)
/*
now we have the witness:
w = [1 3 35 9 27 30]
*/
// flat code to R1CS
fmt.Println("generating R1CS from flat code")
a, b, c := circuit.GenerateR1CS()
/*
now we have the R1CS from the circuit:
a == [[0 1 0 0 0 0] [0 0 0 1 0 0] [0 1 0 0 1 0] [5 0 0 0 0 1]]
b == [[0 1 0 0 0 0] [0 1 0 0 0 0] [1 0 0 0 0 0] [1 0 0 0 0 0]]
c == [[0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1] [0 0 1 0 0 0]]
*/
alphas, betas, gammas, zx := snark.Utils.PF.R1CSToQAP(a, b, c)
ax, bx, cx, px := snark.Utils.PF.CombinePolynomials(w, alphas, betas, gammas)
hx := snark.Utils.PF.DivisorPolinomial(px, zx)
// hx==px/zx so px==hx*zx
assert.Equal(t, px, snark.Utils.PF.Mul(hx, zx))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := snark.Utils.PF.Sub(pf.Mul(ax, bx), cx)
assert.Equal(t, abc, px)
hz := snark.Utils.PF.Mul(hx, zx)
assert.Equal(t, abc, hz)
div, rem := snark.Utils.PF.Div(px, zx)
assert.Equal(t, hx, div)
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
// calculate trusted setup
setup, err := snark.GenerateTrustedSetup(len(w), circuit, alphas, betas, gammas, zx)
assert.Nil(t, err)
fmt.Println("t", setup.Toxic.T)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := snark.GenerateProofs(circuit, setup, hx, w)
assert.Nil(t, err)
assert.True(t, snark.VerifyProof(circuit, setup, proof))
CLI usage
Compile circuit
Having a circuit file test.circuit:
func test(x):
aux = x*x
y = aux*x
z = x + y
out = z + 5
And a inputs file inputs.json
[
3
]
In the command line, execute:
> go-snark compile test.circuit
This will output the compiledcircuit.json file.
Trusted Setup
Having the compiledcircuit.json, now we can generate the TrustedSetup:
> go-snark trustedsetup compiledcircuit.json
This will create the file trustedsetup.json with the TrustedSetup data, and also a toxic.json file, with the parameters to delete from the Trusted Setup.
Generate Proofs
Assumming that we have the compiledcircuit.json and the trustedsetup.json, we can now generate the Proofs with the following command:
> go-snark genproofs
This will store the file proofs.json, that contains all the SNARK proofs.
Verify Proofs
Having the proofs.json, compiledcircuit.json, trustedsetup.json files, we can now verify the Pairings of the proofs, in order to verify the proofs.
> go-snark verify
This will return a true if the proofs are verified, or a false if the proofs are not verified.
Test
go test ./... -v
Thanks to @jbaylina, @bellesmarta, @adriamb for their explanations that helped to understand this a little bit. Also thanks to @vbuterin for all the published articles explaining the zkSNARKs.