|
|
// implementation of https://eprint.iacr.org/2016/260.pdf
package proof
import ( "fmt" "math/big"
"github.com/arnaucube/go-snark/circuit" )
// Groth16Setup is Groth16 system setup structure
type Groth16Setup struct { Toxic struct { T *big.Int // trusted setup secret
Kalpha *big.Int Kbeta *big.Int Kgamma *big.Int Kdelta *big.Int } `json:"-"`
// public
Pk struct { // Proving Key
BACDelta [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to l
Z []*big.Int G1 struct { Alpha [3]*big.Int Beta [3]*big.Int Delta [3]*big.Int At [][3]*big.Int // {a(τ)} from 0 to m
BACGamma [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m
} G2 struct { Beta [3][2]*big.Int Gamma [3][2]*big.Int Delta [3][2]*big.Int BACGamma [][3][2]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m
} PowersTauDelta [][3]*big.Int // powers of τ encrypted in G1 curve, divided by δ
} Vk struct { IC [][3]*big.Int G1 struct { Alpha [3]*big.Int } G2 struct { Beta [3][2]*big.Int Gamma [3][2]*big.Int Delta [3][2]*big.Int } } }
// Groth16Proof is Groth16 proof structure
type Groth16Proof struct { PiA [3]*big.Int PiB [3][2]*big.Int PiC [3]*big.Int }
// Z is ...
func (setup *Groth16Setup) Z() []*big.Int { return setup.Pk.Z }
// Init setups the trusted setup from a compiled circuit
func (setup *Groth16Setup) Init(cir *circuit.Circuit, alphas, betas, gammas [][]*big.Int) error { var err error
setup.Toxic.T, err = Utils.FqR.Rand() if err != nil { return err }
setup.Toxic.Kalpha, err = Utils.FqR.Rand() if err != nil { return err } setup.Toxic.Kbeta, err = Utils.FqR.Rand() if err != nil { return err } setup.Toxic.Kgamma, err = Utils.FqR.Rand() if err != nil { return err } setup.Toxic.Kdelta, err = Utils.FqR.Rand() if err != nil { return err }
zpol := []*big.Int{big.NewInt(int64(1))} for i := 1; i < len(alphas)-1; i++ { zpol = Utils.PF.Mul( zpol, []*big.Int{ Utils.FqR.Neg( big.NewInt(int64(i))), big.NewInt(int64(1)), }) } setup.Pk.Z = zpol zt := Utils.PF.Eval(zpol, setup.Toxic.T) invDelta := Utils.FqR.Inverse(setup.Toxic.Kdelta) ztinvDelta := Utils.FqR.Mul(invDelta, zt)
// encrypt t values with curve generators
// powers of tau divided by delta
var ptd [][3]*big.Int ini := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, ztinvDelta) ptd = append(ptd, ini) tEncr := setup.Toxic.T for i := 1; i < len(zpol); i++ { ptd = append(ptd, Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, Utils.FqR.Mul(tEncr, ztinvDelta))) tEncr = Utils.FqR.Mul(tEncr, setup.Toxic.T) } // powers of τ encrypted in G1 curve, divided by δ
// (G1 * τ) / δ
setup.Pk.PowersTauDelta = ptd
setup.Pk.G1.Alpha = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kalpha) setup.Pk.G1.Beta = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kbeta) setup.Pk.G1.Delta = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kdelta) setup.Pk.G2.Beta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kbeta) setup.Pk.G2.Delta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kdelta)
setup.Vk.G1.Alpha = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kalpha) setup.Vk.G2.Beta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kbeta) setup.Vk.G2.Gamma = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kgamma) setup.Vk.G2.Delta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kdelta)
for i := 0; i < len(cir.Signals); i++ { // Pk.G1.At: {a(τ)} from 0 to m
at := Utils.PF.Eval(alphas[i], setup.Toxic.T) a := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, at) setup.Pk.G1.At = append(setup.Pk.G1.At, a)
bt := Utils.PF.Eval(betas[i], setup.Toxic.T) g1bt := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, bt) g2bt := Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, bt) // G1.BACGamma: {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m in G1
setup.Pk.G1.BACGamma = append(setup.Pk.G1.BACGamma, g1bt) // G2.BACGamma: {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m in G2
setup.Pk.G2.BACGamma = append(setup.Pk.G2.BACGamma, g2bt) }
zero3 := [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()} for i := 0; i < cir.NPublic+1; i++ { setup.Pk.BACDelta = append(setup.Pk.BACDelta, zero3) } for i := cir.NPublic + 1; i < cir.NVars; i++ { // TODO calculate all at, bt, ct outside, to avoid repeating calculations
at := Utils.PF.Eval(alphas[i], setup.Toxic.T) bt := Utils.PF.Eval(betas[i], setup.Toxic.T) ct := Utils.PF.Eval(gammas[i], setup.Toxic.T) c := Utils.FqR.Mul( invDelta, Utils.FqR.Add( Utils.FqR.Add( Utils.FqR.Mul(at, setup.Toxic.Kbeta), Utils.FqR.Mul(bt, setup.Toxic.Kalpha), ), ct, ), ) g1c := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, c)
// Pk.BACDelta: {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to l
setup.Pk.BACDelta = append(setup.Pk.BACDelta, g1c) }
for i := 0; i <= cir.NPublic; i++ { at := Utils.PF.Eval(alphas[i], setup.Toxic.T) bt := Utils.PF.Eval(betas[i], setup.Toxic.T) ct := Utils.PF.Eval(gammas[i], setup.Toxic.T) ic := Utils.FqR.Mul( Utils.FqR.Inverse(setup.Toxic.Kgamma), Utils.FqR.Add( Utils.FqR.Add( Utils.FqR.Mul(at, setup.Toxic.Kbeta), Utils.FqR.Mul(bt, setup.Toxic.Kalpha), ), ct, ), ) g1ic := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, ic) // used in verifier
setup.Vk.IC = append(setup.Vk.IC, g1ic) }
return nil }
// Generate generates Pinocchio proof
func (setup Groth16Setup) Generate(cir *circuit.Circuit, w []*big.Int, px []*big.Int) (Proof, error) { proof := &Groth16Proof{} proof.PiA = [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()} proof.PiB = Utils.Bn.Fq6.Zero() proof.PiC = [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()}
r, err := Utils.FqR.Rand() if err != nil { return &Groth16Proof{}, err } s, err := Utils.FqR.Rand() if err != nil { return &Groth16Proof{}, err }
// piBG1 will hold all the same than proof.PiB but in G1 curve
piBG1 := [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()}
for i := 0; i < cir.NVars; i++ { proof.PiA = Utils.Bn.G1.Add(proof.PiA, Utils.Bn.G1.MulScalar(setup.Pk.G1.At[i], w[i])) piBG1 = Utils.Bn.G1.Add(piBG1, Utils.Bn.G1.MulScalar(setup.Pk.G1.BACGamma[i], w[i])) proof.PiB = Utils.Bn.G2.Add(proof.PiB, Utils.Bn.G2.MulScalar(setup.Pk.G2.BACGamma[i], w[i])) } for i := cir.NPublic + 1; i < cir.NVars; i++ { proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(setup.Pk.BACDelta[i], w[i])) }
// piA = (Σ from 0 to m (pk.A * w[i])) + pk.Alpha1 + r * δ
proof.PiA = Utils.Bn.G1.Add(proof.PiA, setup.Pk.G1.Alpha) deltaR := Utils.Bn.G1.MulScalar(setup.Pk.G1.Delta, r) proof.PiA = Utils.Bn.G1.Add(proof.PiA, deltaR)
// piBG1 = (Σ from 0 to m (pk.B1 * w[i])) + pk.g1.Beta + s * δ
// piB = piB2 = (Σ from 0 to m (pk.B2 * w[i])) + pk.g2.Beta + s * δ
piBG1 = Utils.Bn.G1.Add(piBG1, setup.Pk.G1.Beta) proof.PiB = Utils.Bn.G2.Add(proof.PiB, setup.Pk.G2.Beta) deltaSG1 := Utils.Bn.G1.MulScalar(setup.Pk.G1.Delta, s) piBG1 = Utils.Bn.G1.Add(piBG1, deltaSG1) deltaSG2 := Utils.Bn.G2.MulScalar(setup.Pk.G2.Delta, s) proof.PiB = Utils.Bn.G2.Add(proof.PiB, deltaSG2)
hx := Utils.PF.DivisorPolynomial(px, setup.Pk.Z) // maybe move this calculation to a previous step
// piC = (Σ from l+1 to m (w[i] * (pk.g1.Beta + pk.g1.Alpha + pk.C)) + h(tau)) / δ) + piA*s + r*piB - r*s*δ
for i := 0; i < len(hx); i++ { proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(setup.Pk.PowersTauDelta[i], hx[i])) } proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(proof.PiA, s)) proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(piBG1, r)) negRS := Utils.FqR.Neg(Utils.FqR.Mul(r, s)) proof.PiC = Utils.Bn.G1.Add(proof.PiC, Utils.Bn.G1.MulScalar(setup.Pk.G1.Delta, negRS))
return proof, nil }
// Verify verifies over the BN128 the Pairings of the Proof
func (setup Groth16Setup) Verify(proof Proof, publicSignals []*big.Int) (bool, error) { pproof, ok := proof.(*Groth16Proof) if !ok { return false, fmt.Errorf("bad proof type") }
icPubl := setup.Vk.IC[0] for i := 0; i < len(publicSignals); i++ { icPubl = Utils.Bn.G1.Add(icPubl, Utils.Bn.G1.MulScalar(setup.Vk.IC[i+1], publicSignals[i])) }
if !Utils.Bn.Fq12.Equal( Utils.Bn.Pairing(pproof.PiA, pproof.PiB), Utils.Bn.Fq12.Mul( Utils.Bn.Pairing(setup.Vk.G1.Alpha, setup.Vk.G2.Beta), Utils.Bn.Fq12.Mul( Utils.Bn.Pairing(icPubl, setup.Vk.G2.Gamma), Utils.Bn.Pairing(pproof.PiC, setup.Vk.G2.Delta), ), )) { return false, nil }
return true, nil }
|