|
|
@ -0,0 +1,218 @@ |
|
|
|
// implementation of https://eprint.iacr.org/2016/260.pdf
|
|
|
|
|
|
|
|
package groth16 |
|
|
|
|
|
|
|
import ( |
|
|
|
"math/big" |
|
|
|
|
|
|
|
"github.com/arnaucube/go-snark/bn128" |
|
|
|
"github.com/arnaucube/go-snark/circuitcompiler" |
|
|
|
"github.com/arnaucube/go-snark/fields" |
|
|
|
"github.com/arnaucube/go-snark/r1csqap" |
|
|
|
) |
|
|
|
|
|
|
|
// Setup is the data structure holding the Trusted Setup data. The Setup.Toxic sub struct must be destroyed after the GenerateTrustedSetup function is completed
|
|
|
|
type Setup struct { |
|
|
|
Toxic struct { |
|
|
|
T *big.Int // trusted setup secret
|
|
|
|
Kalpha *big.Int |
|
|
|
Kbeta *big.Int |
|
|
|
Kgamma *big.Int |
|
|
|
Kdelta *big.Int |
|
|
|
} |
|
|
|
|
|
|
|
// public
|
|
|
|
Pk struct { // Proving Key
|
|
|
|
BACDelta [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to l
|
|
|
|
Z []*big.Int |
|
|
|
G1 struct { |
|
|
|
Alpha [3]*big.Int |
|
|
|
Beta [3]*big.Int |
|
|
|
Delta [3]*big.Int |
|
|
|
At [][3]*big.Int // {a(τ)} from 0 to m
|
|
|
|
BACGamma [][3]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m
|
|
|
|
} |
|
|
|
G2 struct { |
|
|
|
Beta [3][2]*big.Int |
|
|
|
Gamma [3][2]*big.Int |
|
|
|
Delta [3][2]*big.Int |
|
|
|
BACGamma [][3][2]*big.Int // {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m
|
|
|
|
} |
|
|
|
PowersTauDelta [][3]*big.Int // powers of τ encrypted in G1 curve, divided by δ
|
|
|
|
} |
|
|
|
Vk struct { |
|
|
|
IC [][3]*big.Int |
|
|
|
G1 struct { |
|
|
|
Alpha [3]*big.Int |
|
|
|
} |
|
|
|
G2 struct { |
|
|
|
Beta [3][2]*big.Int |
|
|
|
Gamma [3][2]*big.Int |
|
|
|
Delta [3][2]*big.Int |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// ProofGroth contains the parameters to proof the zkSNARK
|
|
|
|
type ProofGroth struct { |
|
|
|
PiA [3]*big.Int |
|
|
|
PiB [3][2]*big.Int |
|
|
|
PiC [3]*big.Int |
|
|
|
} |
|
|
|
|
|
|
|
type utils struct { |
|
|
|
Bn bn128.Bn128 |
|
|
|
FqR fields.Fq |
|
|
|
PF r1csqap.PolynomialField |
|
|
|
} |
|
|
|
|
|
|
|
// Utils is the data structure holding the BN128, FqR Finite Field over R, PolynomialField, that will be used inside the snarks operations
|
|
|
|
var Utils = prepareUtils() |
|
|
|
|
|
|
|
func prepareUtils() utils { |
|
|
|
bn, err := bn128.NewBn128() |
|
|
|
if err != nil { |
|
|
|
panic(err) |
|
|
|
} |
|
|
|
// new Finite Field
|
|
|
|
fqR := fields.NewFq(bn.R) |
|
|
|
// new Polynomial Field
|
|
|
|
pf := r1csqap.NewPolynomialField(fqR) |
|
|
|
|
|
|
|
return utils{ |
|
|
|
Bn: bn, |
|
|
|
FqR: fqR, |
|
|
|
PF: pf, |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// GenerateTrustedSetup generates the Trusted Setup from a compiled Circuit. The Setup.Toxic sub data structure must be destroyed
|
|
|
|
func GenerateTrustedSetup(witnessLength int, circuit circuitcompiler.Circuit, alphas, betas, gammas [][]*big.Int) (Setup, error) { |
|
|
|
var setup Setup |
|
|
|
var err error |
|
|
|
|
|
|
|
// generate random t value
|
|
|
|
setup.Toxic.T, err = Utils.FqR.Rand() |
|
|
|
if err != nil { |
|
|
|
return Setup{}, err |
|
|
|
} |
|
|
|
|
|
|
|
setup.Toxic.Kalpha, err = Utils.FqR.Rand() |
|
|
|
if err != nil { |
|
|
|
return Setup{}, err |
|
|
|
} |
|
|
|
setup.Toxic.Kbeta, err = Utils.FqR.Rand() |
|
|
|
if err != nil { |
|
|
|
return Setup{}, err |
|
|
|
} |
|
|
|
setup.Toxic.Kgamma, err = Utils.FqR.Rand() |
|
|
|
if err != nil { |
|
|
|
return Setup{}, err |
|
|
|
} |
|
|
|
setup.Toxic.Kdelta, err = Utils.FqR.Rand() |
|
|
|
if err != nil { |
|
|
|
return Setup{}, err |
|
|
|
} |
|
|
|
|
|
|
|
// z pol
|
|
|
|
zpol := []*big.Int{big.NewInt(int64(1))} |
|
|
|
for i := 1; i < len(alphas)-1; i++ { |
|
|
|
zpol = Utils.PF.Mul( |
|
|
|
zpol, |
|
|
|
[]*big.Int{ |
|
|
|
Utils.FqR.Neg( |
|
|
|
big.NewInt(int64(i))), |
|
|
|
big.NewInt(int64(1)), |
|
|
|
}) |
|
|
|
} |
|
|
|
setup.Pk.Z = zpol |
|
|
|
zt := Utils.PF.Eval(zpol, setup.Toxic.T) |
|
|
|
invDelta := Utils.FqR.Inverse(setup.Toxic.Kdelta) |
|
|
|
ztinvDelta := Utils.FqR.Mul(invDelta, zt) |
|
|
|
|
|
|
|
// encrypt t values with curve generators
|
|
|
|
// powers of tau divided by delta
|
|
|
|
var ptd [][3]*big.Int |
|
|
|
ini := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, ztinvDelta) |
|
|
|
ptd = append(ptd, ini) |
|
|
|
tEncr := setup.Toxic.T |
|
|
|
for i := 1; i < len(zpol); i++ { |
|
|
|
ptd = append(ptd, Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, Utils.FqR.Mul(tEncr, ztinvDelta))) |
|
|
|
tEncr = Utils.FqR.Mul(tEncr, setup.Toxic.T) |
|
|
|
} |
|
|
|
// powers of τ encrypted in G1 curve, divided by δ
|
|
|
|
// (G1 * τ) / δ
|
|
|
|
setup.Pk.PowersTauDelta = ptd |
|
|
|
|
|
|
|
setup.Pk.G1.Alpha = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kalpha) |
|
|
|
setup.Pk.G1.Beta = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kbeta) |
|
|
|
setup.Pk.G1.Delta = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kdelta) |
|
|
|
setup.Pk.G2.Beta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kbeta) |
|
|
|
setup.Pk.G2.Delta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kdelta) |
|
|
|
|
|
|
|
setup.Vk.G1.Alpha = Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, setup.Toxic.Kalpha) |
|
|
|
setup.Vk.G2.Beta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kbeta) |
|
|
|
setup.Vk.G2.Gamma = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kgamma) |
|
|
|
setup.Vk.G2.Delta = Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, setup.Toxic.Kdelta) |
|
|
|
|
|
|
|
for i := 0; i < len(circuit.Signals); i++ { |
|
|
|
// Pk.G1.At: {a(τ)} from 0 to m
|
|
|
|
at := Utils.PF.Eval(alphas[i], setup.Toxic.T) |
|
|
|
a := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, at) |
|
|
|
setup.Pk.G1.At = append(setup.Pk.G1.At, a) |
|
|
|
|
|
|
|
bt := Utils.PF.Eval(betas[i], setup.Toxic.T) |
|
|
|
g1bt := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, bt) |
|
|
|
g2bt := Utils.Bn.G2.MulScalar(Utils.Bn.G2.G, bt) |
|
|
|
// G1.BACGamma: {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m in G1
|
|
|
|
setup.Pk.G1.BACGamma = append(setup.Pk.G1.BACGamma, g1bt) |
|
|
|
// G2.BACGamma: {( βui(x)+αvi(x)+wi(x) ) / δ } from l+1 to m in G2
|
|
|
|
setup.Pk.G2.BACGamma = append(setup.Pk.G2.BACGamma, g2bt) |
|
|
|
} |
|
|
|
|
|
|
|
zero3 := [3]*big.Int{Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero(), Utils.Bn.G1.F.Zero()} |
|
|
|
for i := 0; i < circuit.NPublic+1; i++ { |
|
|
|
setup.Pk.BACDelta = append(setup.Pk.BACDelta, zero3) |
|
|
|
} |
|
|
|
for i := circuit.NPublic + 1; i < circuit.NVars; i++ { |
|
|
|
// TODO calculate all at, bt, ct outside, to avoid repeating calculations
|
|
|
|
at := Utils.PF.Eval(alphas[i], setup.Toxic.T) |
|
|
|
bt := Utils.PF.Eval(betas[i], setup.Toxic.T) |
|
|
|
ct := Utils.PF.Eval(gammas[i], setup.Toxic.T) |
|
|
|
c := Utils.FqR.Mul( |
|
|
|
invDelta, |
|
|
|
Utils.FqR.Add( |
|
|
|
Utils.FqR.Add( |
|
|
|
Utils.FqR.Mul(at, setup.Toxic.Kbeta), |
|
|
|
Utils.FqR.Mul(bt, setup.Toxic.Kalpha), |
|
|
|
), |
|
|
|
ct, |
|
|
|
), |
|
|
|
) |
|
|
|
g1c := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, c) |
|
|
|
|
|
|
|
// Pk.BACDelta: {( βui(x)+αvi(x)+wi(x) ) / γ } from 0 to l
|
|
|
|
setup.Pk.BACDelta = append(setup.Pk.BACDelta, g1c) |
|
|
|
} |
|
|
|
|
|
|
|
for i := 0; i <= circuit.NPublic; i++ { |
|
|
|
at := Utils.PF.Eval(alphas[i], setup.Toxic.T) |
|
|
|
bt := Utils.PF.Eval(betas[i], setup.Toxic.T) |
|
|
|
ct := Utils.PF.Eval(gammas[i], setup.Toxic.T) |
|
|
|
ic := Utils.FqR.Mul( |
|
|
|
Utils.FqR.Inverse(setup.Toxic.Kgamma), |
|
|
|
Utils.FqR.Add( |
|
|
|
Utils.FqR.Add( |
|
|
|
Utils.FqR.Mul(at, setup.Toxic.Kbeta), |
|
|
|
Utils.FqR.Mul(bt, setup.Toxic.Kalpha), |
|
|
|
), |
|
|
|
ct, |
|
|
|
), |
|
|
|
) |
|
|
|
g1ic := Utils.Bn.G1.MulScalar(Utils.Bn.G1.G, ic) |
|
|
|
// used in verifier
|
|
|
|
setup.Vk.IC = append(setup.Vk.IC, g1ic) |
|
|
|
} |
|
|
|
|
|
|
|
return setup, nil |
|
|
|
} |