Browse Source

e(Vb, piB) == e(piB', g2) proof

pull/5/head
arnaucube 6 years ago
parent
commit
19f7216d0e
5 changed files with 181 additions and 126 deletions
  1. +46
    -87
      README.md
  2. +1
    -0
      bn128/README.md
  3. +54
    -0
      r1csqap/README.md
  4. +72
    -37
      zk/zk.go
  5. +8
    -2
      zk/zk_test.go

+ 46
- 87
README.md

@ -1,111 +1,70 @@
# go-snark [![Go Report Card](https://goreportcard.com/badge/github.com/arnaucube/go-snark)](https://goreportcard.com/report/github.com/arnaucube/go-snark)
zk-SNARK library implementation in Go
zkSNARK library implementation in Go
#### Test
```
go test ./... -v
```
### Usage
- [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/zk?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/zk) zk (TrustedSetup, GenerateProof, VerifyProof)
- [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/bn128?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/bn128) bn128 (more details: https://github.com/arnaucube/go-snark/tree/master/bn128)
- [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/fields?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/fields) Finite Fields
- [![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/r1csqap?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/r1csqap) R1CS to QAP (more details: https://github.com/arnaucube/go-snark/tree/master/r1csqap)
Example:
```go
bn, err := bn128.NewBn128()
assert.Nil(t, err)
## R1CS to Quadratic Arithmetic Program
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf
- Vitalik Buterin blog post about QAP https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
- Ariel Gabizon in Zcash blog https://z.cash/blog/snark-explain5
- Lagrange polynomial Wikipedia article https://en.wikipedia.org/wiki/Lagrange_polynomial
// new Finite Field
f := fields.NewFq(bn.R)
#### Usage
- R1CS to QAP
```go
pf := NewPolynomialField(f)
b0 := big.NewInt(int64(0))
b1 := big.NewInt(int64(1))
b3 := big.NewInt(int64(3))
b5 := big.NewInt(int64(5))
b9 := big.NewInt(int64(9))
b27 := big.NewInt(int64(27))
b30 := big.NewInt(int64(30))
b35 := big.NewInt(int64(35))
a := [][]*big.Int{
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b0, b0, b0, b1, b0, b0},
[]*big.Int{b0, b1, b0, b0, b1, b0},
[]*big.Int{b5, b0, b0, b0, b0, b1},
}
b := [][]*big.Int{
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b1, b0, b0, b0, b0, b0},
[]*big.Int{b1, b0, b0, b0, b0, b0},
}
c := [][]*big.Int{
[]*big.Int{b0, b0, b0, b1, b0, b0},
[]*big.Int{b0, b0, b0, b0, b1, b0},
[]*big.Int{b0, b0, b0, b0, b0, b1},
[]*big.Int{b0, b0, b1, b0, b0, b0},
}
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
fmt.Println(alphas)
fmt.Println(betas)
fmt.Println(gammas)
fmt.Println(z)
// new Polynomial Field
pf := r1csqap.NewPolynomialField(f)
w := []*big.Int{b1, b3, b35, b9, b27, b30}
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
fmt.Println(ax)
fmt.Println(bx)
fmt.Println(cx)
fmt.Println(px)
/*
suppose that we have the following variables with *big.Int elements:
a = [[0 1 0 0 0 0] [0 0 0 1 0 0] [0 1 0 0 1 0] [5 0 0 0 0 1]]
b = [[0 1 0 0 0 0] [0 1 0 0 0 0] [1 0 0 0 0 0] [1 0 0 0 0 0]]
c = [[0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1] [0 0 1 0 0 0]]
hx := pf.DivisorPolinomial(px, zx)
fmt.Println(hx)
```
w = [1, 3, 35, 9, 27, 30]
*/
## Bn128
Implementation of the bn128 pairing in Go.
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
Implementation followng the information and the implementations from:
- `Multiplication and Squaring on Pairing-Friendly
Fields`, Augusto Jun Devegili, Colm Ó hÉigeartaigh, Michael Scott, and Ricardo Dahab https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf
- `Optimal Pairings`, Frederik Vercauteren https://www.cosic.esat.kuleuven.be/bcrypt/optimal.pdf , https://eprint.iacr.org/2008/096.pdf
- `Double-and-Add with Relative Jacobian
Coordinates`, Björn Fay https://eprint.iacr.org/2014/1014.pdf
- `Fast and Regular Algorithms for Scalar Multiplication
over Elliptic Curves`, Matthieu Rivain https://eprint.iacr.org/2011/338.pdf
- `High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves`, Jean-Luc Beuchat, Jorge E. González-Díaz, Shigeo Mitsunari, Eiji Okamoto, Francisco Rodríguez-Henríquez, and Tadanori Teruya https://eprint.iacr.org/2010/354.pdf
- `New software speed records for cryptographic pairings`, Michael Naehrig, Ruben Niederhagen, Peter Schwabe https://cryptojedi.org/papers/dclxvi-20100714.pdf
- `Implementing Cryptographic Pairings over Barreto-Naehrig Curves`, Augusto Jun Devegili, Michael Scott, Ricardo Dahab https://eprint.iacr.org/2007/390.pdf
- https://github.com/zcash/zcash/tree/master/src/snark
- https://github.com/iden3/snarkjs
- https://github.com/ethereum/py_ecc/tree/master/py_ecc/bn128
hx := pf.DivisorPolinomial(px, zx)
// hx==px/zx so px==hx*zx
assert.Equal(t, px, pf.Mul(hx, zx))
#### Usage
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := pf.Sub(pf.Mul(ax, bx), cx)
assert.Equal(t, abc, px)
hz := pf.Mul(hx, zx)
assert.Equal(t, abc, hz)
- Pairing
```go
bn128, err := NewBn128()
// calculate trusted setup
setup, err := GenerateTrustedSetup(bn, len(ax))
assert.Nil(t, err)
fmt.Println("trusted setup:")
fmt.Println(setup.G1T)
fmt.Println(setup.G2T)
big25 := big.NewInt(int64(25))
big30 := big.NewInt(int64(30))
g1a := bn128.G1.MulScalar(bn128.G1.G, big25)
g2a := bn128.G2.MulScalar(bn128.G2.G, big30)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(bn, f, setup, ax, bx, cx, hx, zx)
assert.Nil(t, err)
g1b := bn128.G1.MulScalar(bn128.G1.G, big30)
g2b := bn128.G2.MulScalar(bn128.G2.G, big25)
pA, err := bn128.Pairing(g1a, g2a)
assert.Nil(t, err)
pB, err := bn128.Pairing(g1b, g2b)
assert.Nil(t, err)
assert.True(t, bn128.Fq12.Equal(pA, pB))
// verify the proofs with the bn128 pairing
verified := VerifyProof(bn, publicSetup, proof)
assert.True(t, verified)
```
### Test
```
go test ./... -v
```
---

+ 1
- 0
bn128/README.md

@ -1,4 +1,5 @@
## Bn128
[![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/bn128?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/bn128) bn128
Implementation of the bn128 pairing in Go.

+ 54
- 0
r1csqap/README.md

@ -0,0 +1,54 @@
## R1CS to Quadratic Arithmetic Program
[![GoDoc](https://godoc.org/github.com/arnaucube/go-snark/r1csqap?status.svg)](https://godoc.org/github.com/arnaucube/go-snark/r1csqap) R1CS to QAP
- `Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture`, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf
- Vitalik Buterin blog post about QAP https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
- Ariel Gabizon in Zcash blog https://z.cash/blog/snark-explain5
- Lagrange polynomial Wikipedia article https://en.wikipedia.org/wiki/Lagrange_polynomial
#### Usage
- R1CS to QAP
```go
pf := NewPolynomialField(f)
b0 := big.NewInt(int64(0))
b1 := big.NewInt(int64(1))
b3 := big.NewInt(int64(3))
b5 := big.NewInt(int64(5))
b9 := big.NewInt(int64(9))
b27 := big.NewInt(int64(27))
b30 := big.NewInt(int64(30))
b35 := big.NewInt(int64(35))
a := [][]*big.Int{
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b0, b0, b0, b1, b0, b0},
[]*big.Int{b0, b1, b0, b0, b1, b0},
[]*big.Int{b5, b0, b0, b0, b0, b1},
}
b := [][]*big.Int{
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b0, b1, b0, b0, b0, b0},
[]*big.Int{b1, b0, b0, b0, b0, b0},
[]*big.Int{b1, b0, b0, b0, b0, b0},
}
c := [][]*big.Int{
[]*big.Int{b0, b0, b0, b1, b0, b0},
[]*big.Int{b0, b0, b0, b0, b1, b0},
[]*big.Int{b0, b0, b0, b0, b0, b1},
[]*big.Int{b0, b0, b1, b0, b0, b0},
}
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
fmt.Println(alphas)
fmt.Println(betas)
fmt.Println(gammas)
fmt.Println(z)
w := []*big.Int{b1, b3, b35, b9, b27, b30}
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
fmt.Println(ax)
fmt.Println(bx)
fmt.Println(cx)
fmt.Println(px)
hx := pf.DivisorPolinomial(px, zx)
fmt.Println(hx)
```

+ 72
- 37
zk/zk.go

@ -6,13 +6,16 @@ import (
"math/big"
"github.com/arnaucube/go-snark/bn128"
"github.com/arnaucube/go-snark/fields"
)
type Setup struct {
T *big.Int // trusted setup secret
Ka *big.Int // trusted setup
Kb *big.Int // trusted setup
Kc *big.Int // trusted setup
Toxic struct {
T *big.Int // trusted setup secret
Ka *big.Int // prover
Kb *big.Int // prover
Kc *big.Int // prover
}
// public
G1T [][3]*big.Int // t encrypted in G1 curve
@ -22,12 +25,12 @@ type Proof struct {
PiA [3]*big.Int
PiAp [3]*big.Int
PiB [3][2]*big.Int
PiBp [3][2]*big.Int
PiBp [3]*big.Int
PiC [3]*big.Int
PiCp [3]*big.Int
PiH [3]*big.Int
Va [3][2]*big.Int
Vb [3][2]*big.Int
Vb [3]*big.Int
Vc [3][2]*big.Int
Vz [3][2]*big.Int
}
@ -38,18 +41,18 @@ func GenerateTrustedSetup(bn bn128.Bn128, pollength int) (Setup, error) {
var setup Setup
var err error
// generate random t value
setup.T, err = rand.Prime(rand.Reader, bits)
setup.Toxic.T, err = rand.Prime(rand.Reader, bits)
if err != nil {
return Setup{}, err
}
fmt.Print("trusted t: ")
fmt.Println(setup.T)
fmt.Println(setup.Toxic.T)
// encrypt t values with curve generators
var gt1 [][3]*big.Int
var gt2 [][3][2]*big.Int
for i := 0; i < pollength; i++ {
tPow := bn.Fq1.Exp(setup.T, big.NewInt(int64(i)))
tPow := bn.Fq1.Exp(setup.Toxic.T, big.NewInt(int64(i)))
tEncr1 := bn.G1.MulScalar(bn.G1.G, tPow)
gt1 = append(gt1, tEncr1)
tEncr2 := bn.G2.MulScalar(bn.G2.G, tPow)
@ -60,67 +63,73 @@ func GenerateTrustedSetup(bn bn128.Bn128, pollength int) (Setup, error) {
setup.G1T = gt1
setup.G2T = gt2
// k for pi'
setup.Ka, err = rand.Prime(rand.Reader, bits)
return setup, nil
}
func GenerateProofs(bn bn128.Bn128, f fields.Fq, setup Setup, ax, bx, cx, hx, zx []*big.Int) (Proof, error) {
var proof Proof
var err error
// k for calculating pi' and Vk
setup.Toxic.Ka, err = rand.Prime(rand.Reader, bits)
if err != nil {
return Setup{}, err
return Proof{}, err
}
setup.Kb, err = rand.Prime(rand.Reader, bits)
setup.Toxic.Kb, err = rand.Prime(rand.Reader, bits)
if err != nil {
return Setup{}, err
return Proof{}, err
}
setup.Kc, err = rand.Prime(rand.Reader, bits)
setup.Toxic.Kc, err = rand.Prime(rand.Reader, bits)
if err != nil {
return Setup{}, err
return Proof{}, err
}
return setup, nil
}
func GenerateProofs(bn bn128.Bn128, setup Setup, ax, bx, cx, hx, zx []*big.Int) Proof {
var proof Proof
// g1*A(x)
// g1*A(t)
proof.PiA = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
for i := 0; i < len(ax); i++ {
m := bn.G1.MulScalar(setup.G1T[i], ax[i])
proof.PiA = bn.G1.Add(proof.PiA, m)
}
proof.PiAp = bn.G1.MulScalar(proof.PiA, setup.Ka)
proof.PiAp = bn.G1.MulScalar(proof.PiA, setup.Toxic.Ka)
// g1*B(x)
// g2*B(t)
proof.PiB = bn.Fq6.Zero()
// g1*B(t)
pib1 := [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
for i := 0; i < len(bx); i++ {
m := bn.G2.MulScalar(setup.G2T[i], bx[i])
proof.PiB = bn.G2.Add(proof.PiB, m)
m1 := bn.G1.MulScalar(setup.G1T[i], bx[i])
pib1 = bn.G1.Add(pib1, m1)
}
proof.PiBp = bn.G2.MulScalar(proof.PiB, setup.Kb)
proof.PiBp = bn.G1.MulScalar(pib1, setup.Toxic.Kb)
// g1*C(x)
// g1*C(t)
proof.PiC = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
for i := 0; i < len(cx); i++ {
m := bn.G1.MulScalar(setup.G1T[i], cx[i])
proof.PiC = bn.G1.Add(proof.PiC, m)
}
proof.PiCp = bn.G1.MulScalar(proof.PiC, setup.Kc)
proof.PiCp = bn.G1.MulScalar(proof.PiC, setup.Toxic.Kc)
g1Ht := [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
// g1*H(t)
proof.PiH = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
for i := 0; i < len(hx); i++ {
m := bn.G1.MulScalar(setup.G1T[i], hx[i])
g1Ht = bn.G1.Add(g1Ht, m)
proof.PiH = bn.G1.Add(proof.PiH, m)
}
g2Zt := bn.Fq6.Zero()
for i := 0; i < len(bx); i++ {
m := bn.G2.MulScalar(setup.G2T[i], zx[i])
g2Zt = bn.G2.Add(g2Zt, m)
}
proof.PiH = g1Ht
proof.Vz = g2Zt
proof.Va = bn.G2.MulScalar(bn.G2.G, setup.Ka)
proof.Vb = bn.G2.MulScalar(bn.G2.G, setup.Kb)
proof.Vc = bn.G2.MulScalar(bn.G2.G, setup.Kc)
proof.Va = bn.G2.MulScalar(bn.G2.G, setup.Toxic.Ka)
proof.Vb = bn.G1.MulScalar(bn.G1.G, setup.Toxic.Kb)
proof.Vc = bn.G2.MulScalar(bn.G2.G, setup.Toxic.Kc)
return proof
return proof, nil
}
func VerifyProof(bn bn128.Bn128, setup Setup, proof Proof) bool {
@ -138,7 +147,18 @@ func VerifyProof(bn bn128.Bn128, setup Setup, proof Proof) bool {
return false
}
// e(piB, Vb) == e(piB', g2)
// e(Vb, piB) == e(piB', g2)
pairingVbPib, err := bn.Pairing(proof.Vb, proof.PiB)
if err != nil {
return false
}
pairingPibpG2, err := bn.Pairing(proof.PiBp, bn.G2.G)
if err != nil {
return false
}
if !bn.Fq12.Equal(pairingVbPib, pairingPibpG2) {
return false
}
// e(piC, Vc) == e(piC', g2)
pairingPicVc, err := bn.Pairing(proof.PiC, proof.Vc)
@ -153,7 +173,22 @@ func VerifyProof(bn bn128.Bn128, setup Setup, proof Proof) bool {
return false
}
//
// e(piA, piB) == e(piH, Vz) * e(piC, g2)
// pairingPiaPib, err := bn.Pairing(proof.PiA, proof.PiB)
// if err != nil {
// return false
// }
// pairingPihVz, err := bn.Pairing(proof.PiH, proof.Vz)
// if err != nil {
// return false
// }
// pairingPicG2, err := bn.Pairing(proof.PiC, bn.G2.G)
// if err != nil {
// return false
// }
// if !bn.Fq12.Equal(pairingPiaPib, bn.Fq12.Mul(pairingPihVz, pairingPicG2)) {
// return false
// }
return true
}

+ 8
- 2
zk/zk_test.go

@ -71,7 +71,8 @@ func TestZk(t *testing.T) {
fmt.Println(setup.G2T)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof := GenerateProofs(bn, setup, ax, bx, cx, hx, zx)
proof, err := GenerateProofs(bn, f, setup, ax, bx, cx, hx, zx)
assert.Nil(t, err)
fmt.Println("proofs:")
fmt.Println(proof.PiA)
fmt.Println(proof.PiB)
@ -79,5 +80,10 @@ func TestZk(t *testing.T) {
fmt.Println(proof.PiH)
fmt.Println(proof.Vz)
assert.True(t, VerifyProof(bn, setup, proof))
publicSetup := Setup{
G1T: setup.G1T,
G2T: setup.G2T,
}
assert.True(t, VerifyProof(bn, publicSetup, proof))
}

Loading…
Cancel
Save