You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
arnaucube 19f7216d0e e(Vb, piB) == e(piB', g2) proof 6 years ago
bn128 e(Vb, piB) == e(piB', g2) proof 6 years ago
fields r1cs to qap over finite field 6 years ago
r1csqap e(Vb, piB) == e(piB', g2) proof 6 years ago
r1csqapFloat doing trusted setup 6 years ago
zk e(Vb, piB) == e(piB', g2) proof 6 years ago
LICENSE Initial commit 6 years ago
README.md e(Vb, piB) == e(piB', g2) proof 6 years ago
go.mod bn128 pairing, r1cs to qap 6 years ago
go.sum bn128 pairing, r1cs to qap 6 years ago

README.md

go-snark Go Report Card

zkSNARK library implementation in Go

Usage

Example:

bn, err := bn128.NewBn128()
assert.Nil(t, err)

// new Finite Field
f := fields.NewFq(bn.R)

// new Polynomial Field
pf := r1csqap.NewPolynomialField(f)

/*
suppose that we have the following variables with *big.Int elements:
a = [[0 1 0 0 0 0] [0 0 0 1 0 0] [0 1 0 0 1 0] [5 0 0 0 0 1]]
b = [[0 1 0 0 0 0] [0 1 0 0 0 0] [1 0 0 0 0 0] [1 0 0 0 0 0]]
c = [[0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1] [0 0 1 0 0 0]]

w = [1, 3, 35, 9, 27, 30]
*/

alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)

ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)

hx := pf.DivisorPolinomial(px, zx)

// hx==px/zx so px==hx*zx
assert.Equal(t, px, pf.Mul(hx, zx))

// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := pf.Sub(pf.Mul(ax, bx), cx)
assert.Equal(t, abc, px)
hz := pf.Mul(hx, zx)
assert.Equal(t, abc, hz)

// calculate trusted setup
setup, err := GenerateTrustedSetup(bn, len(ax))
assert.Nil(t, err)
fmt.Println("trusted setup:")
fmt.Println(setup.G1T)
fmt.Println(setup.G2T)

// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(bn, f, setup, ax, bx, cx, hx, zx)
assert.Nil(t, err)


// verify the proofs with the bn128 pairing
verified := VerifyProof(bn, publicSetup, proof)
assert.True(t, verified)

Test

go test ./... -v

Caution

Not finished, work in progress (implementing this in my free time to understand it better, so I don't have much time).

Thanks to @jbaylina, @bellesmarta, @adriamb for their explanations that helped to understand this a little bit.