You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

3.4 KiB

go-snark Go Report Card

zkSNARK library implementation in Go

Caution

Implementation from scratch in Go to understand the concepts. Do not use in production.

Not finished, implementing this in my free time to understand it better, so I don't have much time.

Usage

Example:

bn, err := bn128.NewBn128()
assert.Nil(t, err)

// new Finite Field
fqR := fields.NewFq(bn.R)

// new Polynomial Field
pf := r1csqap.NewPolynomialField(f)

/*
suppose that we have the following variables with *big.Int elements:
a = [[0 1 0 0 0 0] [0 0 0 1 0 0] [0 1 0 0 1 0] [5 0 0 0 0 1]]
b = [[0 1 0 0 0 0] [0 1 0 0 0 0] [1 0 0 0 0 0] [1 0 0 0 0 0]]
c = [[0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1] [0 0 1 0 0 0]]

w = [1, 3, 35, 9, 27, 30]
*/

alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)

// wittness = 1, 3, 35, 9, 27, 30
w := []*big.Int{b1, b3, b35, b9, b27, b30}
circuit := compiler.Circuit{
	NVars:    6,
	NPublic:  0,
	NSignals: len(w),
}
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)

hx := pf.DivisorPolinomial(px, zx)

// hx==px/zx so px==hx*zx
assert.Equal(t, px, pf.Mul(hx, zx))

// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := pf.Sub(pf.Mul(ax, bx), cx)
assert.Equal(t, abc, px)
hz := pf.Mul(hx, zx)
assert.Equal(t, abc, hz)
	
div, rem := pf.Div(px, zx)
assert.Equal(t, hx, div)
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))

// calculate trusted setup
setup, err := GenerateTrustedSetup(bn, fqR, pf, len(w), circuit, alphas, betas, gammas, zx)
assert.Nil(t, err)
fmt.Println("t", setup.Toxic.T)

// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(bn, fqR, circuit, setup, hx, w)
assert.Nil(t, err)

assert.True(t, VerifyProof(bn, circuit, setup, proof))

Test

go test ./... -v

Thanks to @jbaylina, @bellesmarta, @adriamb for their explanations that helped to understand this a little bit. Also thanks to @vbuterin for all the published articles explaining the zkSNARKs.