arnaucube d42dffff22 | 5 years ago | |
---|---|---|
bn128 | 6 years ago | |
circuitcompiler | 5 years ago | |
fields | 6 years ago | |
r1csqap | 6 years ago | |
r1csqapFloat | 6 years ago | |
.gitignore | 6 years ago | |
LICENSE | 6 years ago | |
README.md | 5 years ago | |
go.mod | 5 years ago | |
go.sum | 5 years ago | |
snark.go | 5 years ago | |
snark_test.go | 5 years ago |
zkSNARK library implementation in Go
Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture
, Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, Madars Virza https://eprint.iacr.org/2013/879.pdf
Pinocchio: Nearly practical verifiable computation
, Bryan Parno, Craig Gentry, Jon Howell, Mariana Raykova https://eprint.iacr.org/2013/279.pdf
Example:
bn, err := bn128.NewBn128()
assert.Nil(t, err)
// new Finite Field
fqR := fields.NewFq(bn.R)
// new Polynomial Field
pf := r1csqap.NewPolynomialField(f)
/*
suppose that we have the following variables with *big.Int elements:
a = [[0 1 0 0 0 0] [0 0 0 1 0 0] [0 1 0 0 1 0] [5 0 0 0 0 1]]
b = [[0 1 0 0 0 0] [0 1 0 0 0 0] [1 0 0 0 0 0] [1 0 0 0 0 0]]
c = [[0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1] [0 0 1 0 0 0]]
w = [1, 3, 35, 9, 27, 30]
*/
alphas, betas, gammas, zx := pf.R1CSToQAP(a, b, c)
// wittness = 1, 3, 35, 9, 27, 30
w := []*big.Int{b1, b3, b35, b9, b27, b30}
circuit := compiler.Circuit{
NVars: 6,
NPublic: 0,
NSignals: len(w),
}
ax, bx, cx, px := pf.CombinePolynomials(w, alphas, betas, gammas)
hx := pf.DivisorPolinomial(px, zx)
// hx==px/zx so px==hx*zx
assert.Equal(t, px, pf.Mul(hx, zx))
// p(x) = a(x) * b(x) - c(x) == h(x) * z(x)
abc := pf.Sub(pf.Mul(ax, bx), cx)
assert.Equal(t, abc, px)
hz := pf.Mul(hx, zx)
assert.Equal(t, abc, hz)
div, rem := pf.Div(px, zx)
assert.Equal(t, hx, div)
assert.Equal(t, rem, r1csqap.ArrayOfBigZeros(4))
// calculate trusted setup
setup, err := GenerateTrustedSetup(bn, fqR, pf, len(w), circuit, alphas, betas, gammas, zx)
assert.Nil(t, err)
fmt.Println("t", setup.Toxic.T)
// piA = g1 * A(t), piB = g2 * B(t), piC = g1 * C(t), piH = g1 * H(t)
proof, err := GenerateProofs(bn, fqR, circuit, setup, hx, w)
assert.Nil(t, err)
assert.True(t, VerifyProof(bn, circuit, setup, proof))
go test ./... -v
Not finished, work in progress (implementing this in my free time to understand it better, so I don't have much time).
Thanks to @jbaylina, @bellesmarta, @adriamb for their explanations that helped to understand this a little bit.