package snark
|
|
|
|
import (
|
|
"fmt"
|
|
"math/big"
|
|
"os"
|
|
|
|
"github.com/arnaucube/go-snark/bn128"
|
|
"github.com/arnaucube/go-snark/compiler"
|
|
"github.com/arnaucube/go-snark/fields"
|
|
"github.com/arnaucube/go-snark/r1csqap"
|
|
)
|
|
|
|
type Setup struct {
|
|
Toxic struct {
|
|
T *big.Int // trusted setup secret
|
|
Ka *big.Int // prover
|
|
Kb *big.Int // prover
|
|
Kc *big.Int // prover
|
|
Kbeta *big.Int
|
|
Kgamma *big.Int
|
|
RhoA *big.Int
|
|
RhoB *big.Int
|
|
RhoC *big.Int
|
|
}
|
|
|
|
// public
|
|
G1T [][3]*big.Int // t encrypted in G1 curve
|
|
G2T [][3][2]*big.Int // t encrypted in G2 curve
|
|
Pk struct { // Proving Key pk:=(pkA, pkB, pkC, pkH)
|
|
A [][3]*big.Int
|
|
B [][3][2]*big.Int
|
|
C [][3]*big.Int
|
|
Kp [][3]*big.Int
|
|
Ap [][3]*big.Int
|
|
Bp [][3]*big.Int
|
|
Cp [][3]*big.Int
|
|
}
|
|
Vk struct {
|
|
Vka [3][2]*big.Int
|
|
Vkb [3]*big.Int
|
|
Vkc [3][2]*big.Int
|
|
A [][3]*big.Int
|
|
G1Kbg [3]*big.Int // g1 * Kbeta * Kgamma
|
|
G2Kbg [3][2]*big.Int // g2 * Kbeta * Kgamma
|
|
G2Kg [3][2]*big.Int // g2 * Kgamma
|
|
Vkz [3][2]*big.Int
|
|
}
|
|
}
|
|
|
|
type Proof struct {
|
|
PiA [3]*big.Int
|
|
PiAp [3]*big.Int
|
|
PiB [3][2]*big.Int
|
|
PiBp [3]*big.Int
|
|
PiC [3]*big.Int
|
|
PiCp [3]*big.Int
|
|
PiH [3]*big.Int
|
|
PiKp [3]*big.Int
|
|
PublicSignals []*big.Int
|
|
}
|
|
|
|
func GenerateTrustedSetup(bn bn128.Bn128, fqR fields.Fq, pf r1csqap.PolynomialField, witnessLength int, circuit compiler.Circuit, alphas, betas, gammas [][]*big.Int, zx []*big.Int) (Setup, error) {
|
|
var setup Setup
|
|
var err error
|
|
// generate random t value
|
|
setup.Toxic.T, err = fqR.Rand()
|
|
if err != nil {
|
|
return Setup{}, err
|
|
}
|
|
|
|
// k for calculating pi' and Vk
|
|
setup.Toxic.Ka, err = fqR.Rand()
|
|
if err != nil {
|
|
return Setup{}, err
|
|
}
|
|
setup.Toxic.Kb, err = fqR.Rand()
|
|
if err != nil {
|
|
return Setup{}, err
|
|
}
|
|
setup.Toxic.Kc, err = fqR.Rand()
|
|
if err != nil {
|
|
return Setup{}, err
|
|
}
|
|
|
|
// generate Kβ (Kbeta) and Kγ (Kgamma)
|
|
setup.Toxic.Kbeta, err = fqR.Rand()
|
|
if err != nil {
|
|
return Setup{}, err
|
|
}
|
|
setup.Toxic.Kgamma, err = fqR.Rand()
|
|
if err != nil {
|
|
return Setup{}, err
|
|
}
|
|
|
|
// generate ρ (Rho): ρA, ρB, ρC
|
|
setup.Toxic.RhoA, err = fqR.Rand()
|
|
if err != nil {
|
|
return Setup{}, err
|
|
}
|
|
setup.Toxic.RhoB, err = fqR.Rand()
|
|
if err != nil {
|
|
return Setup{}, err
|
|
}
|
|
setup.Toxic.RhoC = fqR.Mul(setup.Toxic.RhoA, setup.Toxic.RhoB)
|
|
|
|
// encrypt t values with curve generators
|
|
var gt1 [][3]*big.Int
|
|
var gt2 [][3][2]*big.Int
|
|
for i := 0; i < witnessLength; i++ {
|
|
tPow := fqR.Exp(setup.Toxic.T, big.NewInt(int64(i)))
|
|
tEncr1 := bn.G1.MulScalar(bn.G1.G, tPow)
|
|
gt1 = append(gt1, tEncr1)
|
|
tEncr2 := bn.G2.MulScalar(bn.G2.G, tPow)
|
|
gt2 = append(gt2, tEncr2)
|
|
}
|
|
// gt1: g1, g1*t, g1*t^2, g1*t^3, ...
|
|
// gt2: g2, g2*t, g2*t^2, ...
|
|
setup.G1T = gt1
|
|
setup.G2T = gt2
|
|
|
|
setup.Vk.Vka = bn.G2.MulScalar(bn.G2.G, setup.Toxic.Ka)
|
|
setup.Vk.Vkb = bn.G1.MulScalar(bn.G1.G, setup.Toxic.Kb)
|
|
setup.Vk.Vkc = bn.G2.MulScalar(bn.G2.G, setup.Toxic.Kc)
|
|
|
|
/*
|
|
Verification keys:
|
|
- Vk_betagamma1: setup.G1Kbg = g1 * Kbeta*Kgamma
|
|
- Vk_betagamma2: setup.G2Kbg = g2 * Kbeta*Kgamma
|
|
- Vk_gamma: setup.G2Kg = g2 * Kgamma
|
|
*/
|
|
kbg := fqR.Mul(setup.Toxic.Kbeta, setup.Toxic.Kgamma)
|
|
setup.Vk.G1Kbg = bn.G1.MulScalar(bn.G1.G, kbg)
|
|
setup.Vk.G2Kbg = bn.G2.MulScalar(bn.G2.G, kbg)
|
|
setup.Vk.G2Kg = bn.G2.MulScalar(bn.G2.G, setup.Toxic.Kgamma)
|
|
|
|
// for i := 0; i < circuit.NSignals; i++ {
|
|
for i := 0; i < circuit.NVars; i++ {
|
|
at := pf.Eval(alphas[i], setup.Toxic.T)
|
|
a := bn.G1.MulScalar(bn.G1.G, at)
|
|
setup.Pk.A = append(setup.Pk.A, a)
|
|
if i <= circuit.NPublic {
|
|
setup.Vk.A = append(setup.Vk.A, a)
|
|
}
|
|
|
|
bt := pf.Eval(betas[i], setup.Toxic.T)
|
|
bg1 := bn.G1.MulScalar(bn.G1.G, bt)
|
|
bg2 := bn.G2.MulScalar(bn.G2.G, bt)
|
|
setup.Pk.B = append(setup.Pk.B, bg2)
|
|
|
|
ct := pf.Eval(gammas[i], setup.Toxic.T)
|
|
c := bn.G1.MulScalar(bn.G1.G, ct)
|
|
setup.Pk.C = append(setup.Pk.C, c)
|
|
|
|
kt := fqR.Add(fqR.Add(at, bt), ct)
|
|
k := bn.G1.Affine(bn.G1.MulScalar(bn.G1.G, kt))
|
|
|
|
ktest := bn.G1.Affine(bn.G1.Add(bn.G1.Add(a, bg1), c))
|
|
if !bn.Fq2.Equal(k, ktest) {
|
|
os.Exit(1)
|
|
return setup, err
|
|
}
|
|
|
|
setup.Pk.Ap = append(setup.Pk.Ap, bn.G1.MulScalar(a, setup.Toxic.Ka))
|
|
setup.Pk.Bp = append(setup.Pk.Bp, bn.G1.MulScalar(bg1, setup.Toxic.Kb))
|
|
setup.Pk.Cp = append(setup.Pk.Cp, bn.G1.MulScalar(c, setup.Toxic.Kc))
|
|
k_ := bn.G1.MulScalar(bn.G1.G, kt)
|
|
setup.Pk.Kp = append(setup.Pk.Kp, bn.G1.MulScalar(k_, setup.Toxic.Kbeta))
|
|
}
|
|
setup.Vk.Vkz = bn.G2.MulScalar(bn.G2.G, pf.Eval(zx, setup.Toxic.T))
|
|
|
|
return setup, nil
|
|
}
|
|
|
|
func GenerateProofs(bn bn128.Bn128, f fields.Fq, circuit compiler.Circuit, setup Setup, hx []*big.Int, w []*big.Int) (Proof, error) {
|
|
var proof Proof
|
|
proof.PiA = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
|
proof.PiAp = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
|
proof.PiB = bn.Fq6.Zero()
|
|
proof.PiBp = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
|
proof.PiC = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
|
proof.PiCp = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
|
proof.PiH = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
|
proof.PiKp = [3]*big.Int{bn.G1.F.Zero(), bn.G1.F.Zero(), bn.G1.F.Zero()}
|
|
|
|
for i := circuit.NPublic + 1; i < circuit.NVars; i++ {
|
|
proof.PiA = bn.G1.Add(proof.PiA, bn.G1.MulScalar(setup.Pk.A[i], w[i]))
|
|
proof.PiAp = bn.G1.Add(proof.PiAp, bn.G1.MulScalar(setup.Pk.Ap[i], w[i]))
|
|
}
|
|
|
|
for i := 0; i < circuit.NVars; i++ {
|
|
proof.PiB = bn.G2.Add(proof.PiB, bn.G2.MulScalar(setup.Pk.B[i], w[i]))
|
|
proof.PiBp = bn.G1.Add(proof.PiBp, bn.G1.MulScalar(setup.Pk.Bp[i], w[i]))
|
|
|
|
proof.PiC = bn.G1.Add(proof.PiC, bn.G1.MulScalar(setup.Pk.C[i], w[i]))
|
|
proof.PiCp = bn.G1.Add(proof.PiCp, bn.G1.MulScalar(setup.Pk.Cp[i], w[i]))
|
|
|
|
proof.PiKp = bn.G1.Add(proof.PiKp, bn.G1.MulScalar(setup.Pk.Kp[i], w[i]))
|
|
}
|
|
|
|
for i := 0; i < len(hx); i++ {
|
|
proof.PiH = bn.G1.Add(proof.PiH, bn.G1.MulScalar(setup.G1T[i], hx[i]))
|
|
}
|
|
proof.PublicSignals = w[1 : circuit.NPublic+1]
|
|
|
|
return proof, nil
|
|
}
|
|
|
|
func VerifyProof(bn bn128.Bn128, circuit compiler.Circuit, setup Setup, proof Proof) bool {
|
|
|
|
// e(piA, Va) == e(piA', g2)
|
|
pairingPiaVa := bn.Pairing(proof.PiA, setup.Vk.Vka)
|
|
pairingPiapG2 := bn.Pairing(proof.PiAp, bn.G2.G)
|
|
if !bn.Fq12.Equal(pairingPiaVa, pairingPiapG2) {
|
|
return false
|
|
} else {
|
|
fmt.Println("✓ e(piA, Va) == e(piA', g2), valid knowledge commitment for A")
|
|
}
|
|
|
|
// e(Vb, piB) == e(piB', g2)
|
|
pairingVbPib := bn.Pairing(setup.Vk.Vkb, proof.PiB)
|
|
pairingPibpG2 := bn.Pairing(proof.PiBp, bn.G2.G)
|
|
if !bn.Fq12.Equal(pairingVbPib, pairingPibpG2) {
|
|
return false
|
|
} else {
|
|
fmt.Println("✓ e(Vb, piB) == e(piB', g2), valid knowledge commitment for B")
|
|
}
|
|
|
|
// e(piC, Vc) == e(piC', g2)
|
|
pairingPicVc := bn.Pairing(proof.PiC, setup.Vk.Vkc)
|
|
pairingPicpG2 := bn.Pairing(proof.PiCp, bn.G2.G)
|
|
if !bn.Fq12.Equal(pairingPicVc, pairingPicpG2) {
|
|
return false
|
|
} else {
|
|
fmt.Println("✓ e(piC, Vc) == e(piC', g2), valid knowledge commitment for C")
|
|
}
|
|
|
|
// Vkx, to then calculate Vkx+piA
|
|
vkxpia := setup.Vk.A[0]
|
|
for i := 0; i < circuit.NPublic; i++ {
|
|
vkxpia = bn.G1.Add(vkxpia, bn.G1.MulScalar(setup.Vk.A[i+1], proof.PublicSignals[i]))
|
|
}
|
|
|
|
// e(Vkx+piA, piB) == e(piH, Vkz) * e(piC, g2)
|
|
if !bn.Fq12.Equal(
|
|
bn.Pairing(bn.G1.Add(vkxpia, proof.PiA), proof.PiB),
|
|
bn.Fq12.Mul(
|
|
bn.Pairing(proof.PiH, setup.Vk.Vkz),
|
|
bn.Pairing(proof.PiC, bn.G2.G))) {
|
|
return false
|
|
} else {
|
|
fmt.Println("✓ e(Vkx+piA, piB) == e(piH, Vkz) * e(piC, g2), QAP disibility checked")
|
|
}
|
|
|
|
// e(Vkx+piA+piC, g2KbetaKgamma) * e(g1KbetaKgamma, piB)
|
|
// == e(piK, g2Kgamma)
|
|
piApiC := bn.G1.Add(bn.G1.Add(vkxpia, proof.PiA), proof.PiC)
|
|
pairingPiACG2Kbg := bn.Pairing(piApiC, setup.Vk.G2Kbg)
|
|
pairingG1KbgPiB := bn.Pairing(setup.Vk.G1Kbg, proof.PiB)
|
|
pairingL := bn.Fq12.Mul(pairingPiACG2Kbg, pairingG1KbgPiB)
|
|
pairingR := bn.Pairing(proof.PiKp, setup.Vk.G2Kg)
|
|
if !bn.Fq12.Equal(pairingL, pairingR) {
|
|
return false
|
|
} else {
|
|
fmt.Println("✓ e(Vkx+piA+piC, g2KbetaKgamma) * e(g1KbetaKgamma, piB) == e(piK, g2Kgamma)")
|
|
}
|
|
|
|
return true
|
|
}
|