Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator to work better under real net
- cli / node
- Update handler of SIGINT so that after 3 SIGINTs, the process terminates
unconditionally
- coordinator
- Store stats without pointer
- In all functions that send a variable via channel, check for context done
to avoid deadlock (due to no process reading from the channel, which has
no queue) when the node is stopped.
- Abstract `canForge` so that it can be used outside of the `Coordinator`
- In `canForge` check the blockNumber in current and next slot.
- Update tests due to smart contract changes in slot handling, and minimum
bid defaults
- TxManager
- Add consts, vars and stats to allow evaluating `canForge`
- Add `canForge` method (not used yet)
- Store batch and nonces status (last success and last pending)
- Track nonces internally instead of relying on the ethereum node (this
is required to work with ganache when there are pending txs)
- Handle the (common) case of the receipt not being found after the tx
is sent.
- Don't start the main loop until we get an initial messae fo the stats
and vars (so that in the loop the stats and vars are set to
synchronizer values)
- When a tx fails, check and discard all the failed transactions before
sending the message to stop the pipeline. This will avoid sending
consecutive messages of stop the pipeline when multiple txs are
detected to be failed consecutively. Also, future txs of the same
pipeline after a discarded txs are discarded, and their nonces reused.
- Robust handling of nonces:
- If geth returns nonce is too low, increase it
- If geth returns nonce too hight, decrease it
- If geth returns underpriced, increase gas price
- If geth returns replace underpriced, increase gas price
- Add support for resending transactions after a timeout
- Store `BatchInfos` in a queue
- Pipeline
- When an error is found, stop forging batches and send a message to the
coordinator to stop the pipeline with information of the failed batch
number so that in a restart, non-failed batches are not repated.
- When doing a reset of the stateDB, if possible reset from the local
checkpoint instead of resetting from the synchronizer. This allows
resetting from a batch that is valid but not yet sent / synced.
- Every time a pipeline is started, assign it a number from a counter. This
allows the TxManager to ignore batches from stopped pipelines, via a
message sent by the coordinator.
- Avoid forging when we haven't reached the rollup genesis block number.
- Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the
number of blocks of delay to wait before starting the pipeline when we
reach a slot in which we can forge.
- When detecting a reorg, only reset the pipeline if the batch from which
the pipeline started changed and wasn't sent by us.
- Add config parameter `ScheduleBatchBlocksAheadCheck`:
ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the
forger address is checked to be allowed to forge (apart from checking the
next block), used to decide when to stop scheduling new batches (by
stopping the pipeline). For example, if we are at block 10 and
ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge,
the pipeline will be stopped if we can't forge at block 15. This value
should be the expected number of blocks it takes between scheduling a
batch and having it mined.
- Add config parameter `SendBatchBlocksMarginCheck`:
SendBatchBlocksMarginCheck is the number of margin blocks ahead in which
the coordinator is also checked to be allowed to forge, apart from the
next block; used to decide when to stop sending batches to the smart
contract. For example, if we are at block 10 and
SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the
batch will be discarded if we can't forge at block 15.
- Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout
after which a non-mined ethereum transaction will be resent (reusing the
nonce) with a newly calculated gas price
- Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price
allowed for ethereum transactions
- Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces
of pending transactions for new replacement transactions. This is useful
for testing with Ganache.
- Extend BatchInfo with more useful information for debugging
- eth / ethereum client
- Add necessary methods to create the auth object for transactions manually
so that we can set the nonce, gas price, gas limit, etc manually
- Update `RollupForgeBatch` to take an auth object as input (so that the
coordinator can set parameters manually)
- synchronizer
- In stats, add `NextSlot`
- In stats, store full last batch instead of just last batch number
- Instead of calculating a nextSlot from scratch every time, update the
current struct (only updating the forger info if we are Synced)
- Afer every processed batch, check that the calculated StateDB MTRoot
matches the StateRoot found in the forgeBatch event.
3 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator to work better under real net
- cli / node
- Update handler of SIGINT so that after 3 SIGINTs, the process terminates
unconditionally
- coordinator
- Store stats without pointer
- In all functions that send a variable via channel, check for context done
to avoid deadlock (due to no process reading from the channel, which has
no queue) when the node is stopped.
- Abstract `canForge` so that it can be used outside of the `Coordinator`
- In `canForge` check the blockNumber in current and next slot.
- Update tests due to smart contract changes in slot handling, and minimum
bid defaults
- TxManager
- Add consts, vars and stats to allow evaluating `canForge`
- Add `canForge` method (not used yet)
- Store batch and nonces status (last success and last pending)
- Track nonces internally instead of relying on the ethereum node (this
is required to work with ganache when there are pending txs)
- Handle the (common) case of the receipt not being found after the tx
is sent.
- Don't start the main loop until we get an initial messae fo the stats
and vars (so that in the loop the stats and vars are set to
synchronizer values)
- When a tx fails, check and discard all the failed transactions before
sending the message to stop the pipeline. This will avoid sending
consecutive messages of stop the pipeline when multiple txs are
detected to be failed consecutively. Also, future txs of the same
pipeline after a discarded txs are discarded, and their nonces reused.
- Robust handling of nonces:
- If geth returns nonce is too low, increase it
- If geth returns nonce too hight, decrease it
- If geth returns underpriced, increase gas price
- If geth returns replace underpriced, increase gas price
- Add support for resending transactions after a timeout
- Store `BatchInfos` in a queue
- Pipeline
- When an error is found, stop forging batches and send a message to the
coordinator to stop the pipeline with information of the failed batch
number so that in a restart, non-failed batches are not repated.
- When doing a reset of the stateDB, if possible reset from the local
checkpoint instead of resetting from the synchronizer. This allows
resetting from a batch that is valid but not yet sent / synced.
- Every time a pipeline is started, assign it a number from a counter. This
allows the TxManager to ignore batches from stopped pipelines, via a
message sent by the coordinator.
- Avoid forging when we haven't reached the rollup genesis block number.
- Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the
number of blocks of delay to wait before starting the pipeline when we
reach a slot in which we can forge.
- When detecting a reorg, only reset the pipeline if the batch from which
the pipeline started changed and wasn't sent by us.
- Add config parameter `ScheduleBatchBlocksAheadCheck`:
ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the
forger address is checked to be allowed to forge (apart from checking the
next block), used to decide when to stop scheduling new batches (by
stopping the pipeline). For example, if we are at block 10 and
ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge,
the pipeline will be stopped if we can't forge at block 15. This value
should be the expected number of blocks it takes between scheduling a
batch and having it mined.
- Add config parameter `SendBatchBlocksMarginCheck`:
SendBatchBlocksMarginCheck is the number of margin blocks ahead in which
the coordinator is also checked to be allowed to forge, apart from the
next block; used to decide when to stop sending batches to the smart
contract. For example, if we are at block 10 and
SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the
batch will be discarded if we can't forge at block 15.
- Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout
after which a non-mined ethereum transaction will be resent (reusing the
nonce) with a newly calculated gas price
- Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price
allowed for ethereum transactions
- Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces
of pending transactions for new replacement transactions. This is useful
for testing with Ganache.
- Extend BatchInfo with more useful information for debugging
- eth / ethereum client
- Add necessary methods to create the auth object for transactions manually
so that we can set the nonce, gas price, gas limit, etc manually
- Update `RollupForgeBatch` to take an auth object as input (so that the
coordinator can set parameters manually)
- synchronizer
- In stats, add `NextSlot`
- In stats, store full last batch instead of just last batch number
- Instead of calculating a nextSlot from scratch every time, update the
current struct (only updating the forger info if we are Synced)
- Afer every processed batch, check that the calculated StateDB MTRoot
matches the StateRoot found in the forgeBatch event.
3 years ago Update coordinator to work better under real net
- cli / node
- Update handler of SIGINT so that after 3 SIGINTs, the process terminates
unconditionally
- coordinator
- Store stats without pointer
- In all functions that send a variable via channel, check for context done
to avoid deadlock (due to no process reading from the channel, which has
no queue) when the node is stopped.
- Abstract `canForge` so that it can be used outside of the `Coordinator`
- In `canForge` check the blockNumber in current and next slot.
- Update tests due to smart contract changes in slot handling, and minimum
bid defaults
- TxManager
- Add consts, vars and stats to allow evaluating `canForge`
- Add `canForge` method (not used yet)
- Store batch and nonces status (last success and last pending)
- Track nonces internally instead of relying on the ethereum node (this
is required to work with ganache when there are pending txs)
- Handle the (common) case of the receipt not being found after the tx
is sent.
- Don't start the main loop until we get an initial messae fo the stats
and vars (so that in the loop the stats and vars are set to
synchronizer values)
- When a tx fails, check and discard all the failed transactions before
sending the message to stop the pipeline. This will avoid sending
consecutive messages of stop the pipeline when multiple txs are
detected to be failed consecutively. Also, future txs of the same
pipeline after a discarded txs are discarded, and their nonces reused.
- Robust handling of nonces:
- If geth returns nonce is too low, increase it
- If geth returns nonce too hight, decrease it
- If geth returns underpriced, increase gas price
- If geth returns replace underpriced, increase gas price
- Add support for resending transactions after a timeout
- Store `BatchInfos` in a queue
- Pipeline
- When an error is found, stop forging batches and send a message to the
coordinator to stop the pipeline with information of the failed batch
number so that in a restart, non-failed batches are not repated.
- When doing a reset of the stateDB, if possible reset from the local
checkpoint instead of resetting from the synchronizer. This allows
resetting from a batch that is valid but not yet sent / synced.
- Every time a pipeline is started, assign it a number from a counter. This
allows the TxManager to ignore batches from stopped pipelines, via a
message sent by the coordinator.
- Avoid forging when we haven't reached the rollup genesis block number.
- Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the
number of blocks of delay to wait before starting the pipeline when we
reach a slot in which we can forge.
- When detecting a reorg, only reset the pipeline if the batch from which
the pipeline started changed and wasn't sent by us.
- Add config parameter `ScheduleBatchBlocksAheadCheck`:
ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the
forger address is checked to be allowed to forge (apart from checking the
next block), used to decide when to stop scheduling new batches (by
stopping the pipeline). For example, if we are at block 10 and
ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge,
the pipeline will be stopped if we can't forge at block 15. This value
should be the expected number of blocks it takes between scheduling a
batch and having it mined.
- Add config parameter `SendBatchBlocksMarginCheck`:
SendBatchBlocksMarginCheck is the number of margin blocks ahead in which
the coordinator is also checked to be allowed to forge, apart from the
next block; used to decide when to stop sending batches to the smart
contract. For example, if we are at block 10 and
SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the
batch will be discarded if we can't forge at block 15.
- Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout
after which a non-mined ethereum transaction will be resent (reusing the
nonce) with a newly calculated gas price
- Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price
allowed for ethereum transactions
- Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces
of pending transactions for new replacement transactions. This is useful
for testing with Ganache.
- Extend BatchInfo with more useful information for debugging
- eth / ethereum client
- Add necessary methods to create the auth object for transactions manually
so that we can set the nonce, gas price, gas limit, etc manually
- Update `RollupForgeBatch` to take an auth object as input (so that the
coordinator can set parameters manually)
- synchronizer
- In stats, add `NextSlot`
- In stats, store full last batch instead of just last batch number
- Instead of calculating a nextSlot from scratch every time, update the
current struct (only updating the forger info if we are Synced)
- Afer every processed batch, check that the calculated StateDB MTRoot
matches the StateRoot found in the forgeBatch event.
3 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator to work better under real net
- cli / node
- Update handler of SIGINT so that after 3 SIGINTs, the process terminates
unconditionally
- coordinator
- Store stats without pointer
- In all functions that send a variable via channel, check for context done
to avoid deadlock (due to no process reading from the channel, which has
no queue) when the node is stopped.
- Abstract `canForge` so that it can be used outside of the `Coordinator`
- In `canForge` check the blockNumber in current and next slot.
- Update tests due to smart contract changes in slot handling, and minimum
bid defaults
- TxManager
- Add consts, vars and stats to allow evaluating `canForge`
- Add `canForge` method (not used yet)
- Store batch and nonces status (last success and last pending)
- Track nonces internally instead of relying on the ethereum node (this
is required to work with ganache when there are pending txs)
- Handle the (common) case of the receipt not being found after the tx
is sent.
- Don't start the main loop until we get an initial messae fo the stats
and vars (so that in the loop the stats and vars are set to
synchronizer values)
- When a tx fails, check and discard all the failed transactions before
sending the message to stop the pipeline. This will avoid sending
consecutive messages of stop the pipeline when multiple txs are
detected to be failed consecutively. Also, future txs of the same
pipeline after a discarded txs are discarded, and their nonces reused.
- Robust handling of nonces:
- If geth returns nonce is too low, increase it
- If geth returns nonce too hight, decrease it
- If geth returns underpriced, increase gas price
- If geth returns replace underpriced, increase gas price
- Add support for resending transactions after a timeout
- Store `BatchInfos` in a queue
- Pipeline
- When an error is found, stop forging batches and send a message to the
coordinator to stop the pipeline with information of the failed batch
number so that in a restart, non-failed batches are not repated.
- When doing a reset of the stateDB, if possible reset from the local
checkpoint instead of resetting from the synchronizer. This allows
resetting from a batch that is valid but not yet sent / synced.
- Every time a pipeline is started, assign it a number from a counter. This
allows the TxManager to ignore batches from stopped pipelines, via a
message sent by the coordinator.
- Avoid forging when we haven't reached the rollup genesis block number.
- Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the
number of blocks of delay to wait before starting the pipeline when we
reach a slot in which we can forge.
- When detecting a reorg, only reset the pipeline if the batch from which
the pipeline started changed and wasn't sent by us.
- Add config parameter `ScheduleBatchBlocksAheadCheck`:
ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the
forger address is checked to be allowed to forge (apart from checking the
next block), used to decide when to stop scheduling new batches (by
stopping the pipeline). For example, if we are at block 10 and
ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge,
the pipeline will be stopped if we can't forge at block 15. This value
should be the expected number of blocks it takes between scheduling a
batch and having it mined.
- Add config parameter `SendBatchBlocksMarginCheck`:
SendBatchBlocksMarginCheck is the number of margin blocks ahead in which
the coordinator is also checked to be allowed to forge, apart from the
next block; used to decide when to stop sending batches to the smart
contract. For example, if we are at block 10 and
SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the
batch will be discarded if we can't forge at block 15.
- Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout
after which a non-mined ethereum transaction will be resent (reusing the
nonce) with a newly calculated gas price
- Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price
allowed for ethereum transactions
- Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces
of pending transactions for new replacement transactions. This is useful
for testing with Ganache.
- Extend BatchInfo with more useful information for debugging
- eth / ethereum client
- Add necessary methods to create the auth object for transactions manually
so that we can set the nonce, gas price, gas limit, etc manually
- Update `RollupForgeBatch` to take an auth object as input (so that the
coordinator can set parameters manually)
- synchronizer
- In stats, add `NextSlot`
- In stats, store full last batch instead of just last batch number
- Instead of calculating a nextSlot from scratch every time, update the
current struct (only updating the forger info if we are Synced)
- Afer every processed batch, check that the calculated StateDB MTRoot
matches the StateRoot found in the forgeBatch event.
3 years ago Update coordinator to work better under real net
- cli / node
- Update handler of SIGINT so that after 3 SIGINTs, the process terminates
unconditionally
- coordinator
- Store stats without pointer
- In all functions that send a variable via channel, check for context done
to avoid deadlock (due to no process reading from the channel, which has
no queue) when the node is stopped.
- Abstract `canForge` so that it can be used outside of the `Coordinator`
- In `canForge` check the blockNumber in current and next slot.
- Update tests due to smart contract changes in slot handling, and minimum
bid defaults
- TxManager
- Add consts, vars and stats to allow evaluating `canForge`
- Add `canForge` method (not used yet)
- Store batch and nonces status (last success and last pending)
- Track nonces internally instead of relying on the ethereum node (this
is required to work with ganache when there are pending txs)
- Handle the (common) case of the receipt not being found after the tx
is sent.
- Don't start the main loop until we get an initial messae fo the stats
and vars (so that in the loop the stats and vars are set to
synchronizer values)
- When a tx fails, check and discard all the failed transactions before
sending the message to stop the pipeline. This will avoid sending
consecutive messages of stop the pipeline when multiple txs are
detected to be failed consecutively. Also, future txs of the same
pipeline after a discarded txs are discarded, and their nonces reused.
- Robust handling of nonces:
- If geth returns nonce is too low, increase it
- If geth returns nonce too hight, decrease it
- If geth returns underpriced, increase gas price
- If geth returns replace underpriced, increase gas price
- Add support for resending transactions after a timeout
- Store `BatchInfos` in a queue
- Pipeline
- When an error is found, stop forging batches and send a message to the
coordinator to stop the pipeline with information of the failed batch
number so that in a restart, non-failed batches are not repated.
- When doing a reset of the stateDB, if possible reset from the local
checkpoint instead of resetting from the synchronizer. This allows
resetting from a batch that is valid but not yet sent / synced.
- Every time a pipeline is started, assign it a number from a counter. This
allows the TxManager to ignore batches from stopped pipelines, via a
message sent by the coordinator.
- Avoid forging when we haven't reached the rollup genesis block number.
- Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the
number of blocks of delay to wait before starting the pipeline when we
reach a slot in which we can forge.
- When detecting a reorg, only reset the pipeline if the batch from which
the pipeline started changed and wasn't sent by us.
- Add config parameter `ScheduleBatchBlocksAheadCheck`:
ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the
forger address is checked to be allowed to forge (apart from checking the
next block), used to decide when to stop scheduling new batches (by
stopping the pipeline). For example, if we are at block 10 and
ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge,
the pipeline will be stopped if we can't forge at block 15. This value
should be the expected number of blocks it takes between scheduling a
batch and having it mined.
- Add config parameter `SendBatchBlocksMarginCheck`:
SendBatchBlocksMarginCheck is the number of margin blocks ahead in which
the coordinator is also checked to be allowed to forge, apart from the
next block; used to decide when to stop sending batches to the smart
contract. For example, if we are at block 10 and
SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the
batch will be discarded if we can't forge at block 15.
- Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout
after which a non-mined ethereum transaction will be resent (reusing the
nonce) with a newly calculated gas price
- Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price
allowed for ethereum transactions
- Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces
of pending transactions for new replacement transactions. This is useful
for testing with Ganache.
- Extend BatchInfo with more useful information for debugging
- eth / ethereum client
- Add necessary methods to create the auth object for transactions manually
so that we can set the nonce, gas price, gas limit, etc manually
- Update `RollupForgeBatch` to take an auth object as input (so that the
coordinator can set parameters manually)
- synchronizer
- In stats, add `NextSlot`
- In stats, store full last batch instead of just last batch number
- Instead of calculating a nextSlot from scratch every time, update the
current struct (only updating the forger info if we are Synced)
- Afer every processed batch, check that the calculated StateDB MTRoot
matches the StateRoot found in the forgeBatch event.
3 years ago Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update missing parts, improve til, and more
- Node
- Updated configuration to initialize the interface to all the smart
contracts
- Common
- Moved BlockData and BatchData types to common so that they can be
shared among: historydb, til and synchronizer
- Remove hash.go (it was never used)
- Remove slot.go (it was never used)
- Remove smartcontractparams.go (it was never used, and appropriate
structs are defined in `eth/`)
- Comment state / status method until requirements of this method are
properly defined, and move it to Synchronizer
- Synchronizer
- Simplify `Sync` routine to only sync one block per call, and return
useful information.
- Use BlockData and BatchData from common
- Check that events belong to the expected block hash
- In L1Batch, query L1UserTxs from HistoryDB
- Fill ERC20 token information
- Test AddTokens with test.Client
- HistryDB
- Use BlockData and BatchData from common
- Add `GetAllTokens` method
- Uncomment and update GetL1UserTxs (with corresponding tests)
- Til
- Rename all instances of RegisterToken to AddToken (to follow the smart
contract implementation naming)
- Use BlockData and BatchData from common
- Move testL1CoordinatorTxs and testL2Txs to a separate struct
from BatchData in Context
- Start Context with BatchNum = 1 (which the protocol defines to be the
first batchNum)
- In every Batch, set StateRoot and ExitRoot to a non-nil big.Int
(zero).
- In all L1Txs, if LoadAmount is not used, set it to 0; if Amount is not
used, set it to 0; so that no *big.Int is nil.
- In L1UserTx, don't set BatchNum, because when L1UserTxs are created
and obtained by the synchronizer, the BatchNum is not known yet (it's
a synchronizer job to set it)
- In L1UserTxs, set `UserOrigin` and set `ToForgeL1TxsNum`.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator to work better under real net
- cli / node
- Update handler of SIGINT so that after 3 SIGINTs, the process terminates
unconditionally
- coordinator
- Store stats without pointer
- In all functions that send a variable via channel, check for context done
to avoid deadlock (due to no process reading from the channel, which has
no queue) when the node is stopped.
- Abstract `canForge` so that it can be used outside of the `Coordinator`
- In `canForge` check the blockNumber in current and next slot.
- Update tests due to smart contract changes in slot handling, and minimum
bid defaults
- TxManager
- Add consts, vars and stats to allow evaluating `canForge`
- Add `canForge` method (not used yet)
- Store batch and nonces status (last success and last pending)
- Track nonces internally instead of relying on the ethereum node (this
is required to work with ganache when there are pending txs)
- Handle the (common) case of the receipt not being found after the tx
is sent.
- Don't start the main loop until we get an initial messae fo the stats
and vars (so that in the loop the stats and vars are set to
synchronizer values)
- When a tx fails, check and discard all the failed transactions before
sending the message to stop the pipeline. This will avoid sending
consecutive messages of stop the pipeline when multiple txs are
detected to be failed consecutively. Also, future txs of the same
pipeline after a discarded txs are discarded, and their nonces reused.
- Robust handling of nonces:
- If geth returns nonce is too low, increase it
- If geth returns nonce too hight, decrease it
- If geth returns underpriced, increase gas price
- If geth returns replace underpriced, increase gas price
- Add support for resending transactions after a timeout
- Store `BatchInfos` in a queue
- Pipeline
- When an error is found, stop forging batches and send a message to the
coordinator to stop the pipeline with information of the failed batch
number so that in a restart, non-failed batches are not repated.
- When doing a reset of the stateDB, if possible reset from the local
checkpoint instead of resetting from the synchronizer. This allows
resetting from a batch that is valid but not yet sent / synced.
- Every time a pipeline is started, assign it a number from a counter. This
allows the TxManager to ignore batches from stopped pipelines, via a
message sent by the coordinator.
- Avoid forging when we haven't reached the rollup genesis block number.
- Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the
number of blocks of delay to wait before starting the pipeline when we
reach a slot in which we can forge.
- When detecting a reorg, only reset the pipeline if the batch from which
the pipeline started changed and wasn't sent by us.
- Add config parameter `ScheduleBatchBlocksAheadCheck`:
ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the
forger address is checked to be allowed to forge (apart from checking the
next block), used to decide when to stop scheduling new batches (by
stopping the pipeline). For example, if we are at block 10 and
ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge,
the pipeline will be stopped if we can't forge at block 15. This value
should be the expected number of blocks it takes between scheduling a
batch and having it mined.
- Add config parameter `SendBatchBlocksMarginCheck`:
SendBatchBlocksMarginCheck is the number of margin blocks ahead in which
the coordinator is also checked to be allowed to forge, apart from the
next block; used to decide when to stop sending batches to the smart
contract. For example, if we are at block 10 and
SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the
batch will be discarded if we can't forge at block 15.
- Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout
after which a non-mined ethereum transaction will be resent (reusing the
nonce) with a newly calculated gas price
- Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price
allowed for ethereum transactions
- Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces
of pending transactions for new replacement transactions. This is useful
for testing with Ganache.
- Extend BatchInfo with more useful information for debugging
- eth / ethereum client
- Add necessary methods to create the auth object for transactions manually
so that we can set the nonce, gas price, gas limit, etc manually
- Update `RollupForgeBatch` to take an auth object as input (so that the
coordinator can set parameters manually)
- synchronizer
- In stats, add `NextSlot`
- In stats, store full last batch instead of just last batch number
- Instead of calculating a nextSlot from scratch every time, update the
current struct (only updating the forger info if we are Synced)
- Afer every processed batch, check that the calculated StateDB MTRoot
matches the StateRoot found in the forgeBatch event.
3 years ago Update coordinator to work better under real net
- cli / node
- Update handler of SIGINT so that after 3 SIGINTs, the process terminates
unconditionally
- coordinator
- Store stats without pointer
- In all functions that send a variable via channel, check for context done
to avoid deadlock (due to no process reading from the channel, which has
no queue) when the node is stopped.
- Abstract `canForge` so that it can be used outside of the `Coordinator`
- In `canForge` check the blockNumber in current and next slot.
- Update tests due to smart contract changes in slot handling, and minimum
bid defaults
- TxManager
- Add consts, vars and stats to allow evaluating `canForge`
- Add `canForge` method (not used yet)
- Store batch and nonces status (last success and last pending)
- Track nonces internally instead of relying on the ethereum node (this
is required to work with ganache when there are pending txs)
- Handle the (common) case of the receipt not being found after the tx
is sent.
- Don't start the main loop until we get an initial messae fo the stats
and vars (so that in the loop the stats and vars are set to
synchronizer values)
- When a tx fails, check and discard all the failed transactions before
sending the message to stop the pipeline. This will avoid sending
consecutive messages of stop the pipeline when multiple txs are
detected to be failed consecutively. Also, future txs of the same
pipeline after a discarded txs are discarded, and their nonces reused.
- Robust handling of nonces:
- If geth returns nonce is too low, increase it
- If geth returns nonce too hight, decrease it
- If geth returns underpriced, increase gas price
- If geth returns replace underpriced, increase gas price
- Add support for resending transactions after a timeout
- Store `BatchInfos` in a queue
- Pipeline
- When an error is found, stop forging batches and send a message to the
coordinator to stop the pipeline with information of the failed batch
number so that in a restart, non-failed batches are not repated.
- When doing a reset of the stateDB, if possible reset from the local
checkpoint instead of resetting from the synchronizer. This allows
resetting from a batch that is valid but not yet sent / synced.
- Every time a pipeline is started, assign it a number from a counter. This
allows the TxManager to ignore batches from stopped pipelines, via a
message sent by the coordinator.
- Avoid forging when we haven't reached the rollup genesis block number.
- Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the
number of blocks of delay to wait before starting the pipeline when we
reach a slot in which we can forge.
- When detecting a reorg, only reset the pipeline if the batch from which
the pipeline started changed and wasn't sent by us.
- Add config parameter `ScheduleBatchBlocksAheadCheck`:
ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the
forger address is checked to be allowed to forge (apart from checking the
next block), used to decide when to stop scheduling new batches (by
stopping the pipeline). For example, if we are at block 10 and
ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge,
the pipeline will be stopped if we can't forge at block 15. This value
should be the expected number of blocks it takes between scheduling a
batch and having it mined.
- Add config parameter `SendBatchBlocksMarginCheck`:
SendBatchBlocksMarginCheck is the number of margin blocks ahead in which
the coordinator is also checked to be allowed to forge, apart from the
next block; used to decide when to stop sending batches to the smart
contract. For example, if we are at block 10 and
SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the
batch will be discarded if we can't forge at block 15.
- Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout
after which a non-mined ethereum transaction will be resent (reusing the
nonce) with a newly calculated gas price
- Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price
allowed for ethereum transactions
- Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces
of pending transactions for new replacement transactions. This is useful
for testing with Ganache.
- Extend BatchInfo with more useful information for debugging
- eth / ethereum client
- Add necessary methods to create the auth object for transactions manually
so that we can set the nonce, gas price, gas limit, etc manually
- Update `RollupForgeBatch` to take an auth object as input (so that the
coordinator can set parameters manually)
- synchronizer
- In stats, add `NextSlot`
- In stats, store full last batch instead of just last batch number
- Instead of calculating a nextSlot from scratch every time, update the
current struct (only updating the forger info if we are Synced)
- Afer every processed batch, check that the calculated StateDB MTRoot
matches the StateRoot found in the forgeBatch event.
3 years ago Update coordinator to work better under real net
- cli / node
- Update handler of SIGINT so that after 3 SIGINTs, the process terminates
unconditionally
- coordinator
- Store stats without pointer
- In all functions that send a variable via channel, check for context done
to avoid deadlock (due to no process reading from the channel, which has
no queue) when the node is stopped.
- Abstract `canForge` so that it can be used outside of the `Coordinator`
- In `canForge` check the blockNumber in current and next slot.
- Update tests due to smart contract changes in slot handling, and minimum
bid defaults
- TxManager
- Add consts, vars and stats to allow evaluating `canForge`
- Add `canForge` method (not used yet)
- Store batch and nonces status (last success and last pending)
- Track nonces internally instead of relying on the ethereum node (this
is required to work with ganache when there are pending txs)
- Handle the (common) case of the receipt not being found after the tx
is sent.
- Don't start the main loop until we get an initial messae fo the stats
and vars (so that in the loop the stats and vars are set to
synchronizer values)
- When a tx fails, check and discard all the failed transactions before
sending the message to stop the pipeline. This will avoid sending
consecutive messages of stop the pipeline when multiple txs are
detected to be failed consecutively. Also, future txs of the same
pipeline after a discarded txs are discarded, and their nonces reused.
- Robust handling of nonces:
- If geth returns nonce is too low, increase it
- If geth returns nonce too hight, decrease it
- If geth returns underpriced, increase gas price
- If geth returns replace underpriced, increase gas price
- Add support for resending transactions after a timeout
- Store `BatchInfos` in a queue
- Pipeline
- When an error is found, stop forging batches and send a message to the
coordinator to stop the pipeline with information of the failed batch
number so that in a restart, non-failed batches are not repated.
- When doing a reset of the stateDB, if possible reset from the local
checkpoint instead of resetting from the synchronizer. This allows
resetting from a batch that is valid but not yet sent / synced.
- Every time a pipeline is started, assign it a number from a counter. This
allows the TxManager to ignore batches from stopped pipelines, via a
message sent by the coordinator.
- Avoid forging when we haven't reached the rollup genesis block number.
- Add config parameter `StartSlotBlocksDelay`: StartSlotBlocksDelay is the
number of blocks of delay to wait before starting the pipeline when we
reach a slot in which we can forge.
- When detecting a reorg, only reset the pipeline if the batch from which
the pipeline started changed and wasn't sent by us.
- Add config parameter `ScheduleBatchBlocksAheadCheck`:
ScheduleBatchBlocksAheadCheck is the number of blocks ahead in which the
forger address is checked to be allowed to forge (apart from checking the
next block), used to decide when to stop scheduling new batches (by
stopping the pipeline). For example, if we are at block 10 and
ScheduleBatchBlocksAheadCheck is 5, eventhough at block 11 we canForge,
the pipeline will be stopped if we can't forge at block 15. This value
should be the expected number of blocks it takes between scheduling a
batch and having it mined.
- Add config parameter `SendBatchBlocksMarginCheck`:
SendBatchBlocksMarginCheck is the number of margin blocks ahead in which
the coordinator is also checked to be allowed to forge, apart from the
next block; used to decide when to stop sending batches to the smart
contract. For example, if we are at block 10 and
SendBatchBlocksMarginCheck is 5, eventhough at block 11 we canForge, the
batch will be discarded if we can't forge at block 15.
- Add config parameter `TxResendTimeout`: TxResendTimeout is the timeout
after which a non-mined ethereum transaction will be resent (reusing the
nonce) with a newly calculated gas price
- Add config parameter `MaxGasPrice`: MaxGasPrice is the maximum gas price
allowed for ethereum transactions
- Add config parameter `NoReuseNonce`: NoReuseNonce disables reusing nonces
of pending transactions for new replacement transactions. This is useful
for testing with Ganache.
- Extend BatchInfo with more useful information for debugging
- eth / ethereum client
- Add necessary methods to create the auth object for transactions manually
so that we can set the nonce, gas price, gas limit, etc manually
- Update `RollupForgeBatch` to take an auth object as input (so that the
coordinator can set parameters manually)
- synchronizer
- In stats, add `NextSlot`
- In stats, store full last batch instead of just last batch number
- Instead of calculating a nextSlot from scratch every time, update the
current struct (only updating the forger info if we are Synced)
- Afer every processed batch, check that the calculated StateDB MTRoot
matches the StateRoot found in the forgeBatch event.
3 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago Update coordinator, call all api update functions
- Common:
- Rename Block.EthBlockNum to Block.Num to avoid unneeded repetition
- API:
- Add UpdateNetworkInfoBlock to update just block information, to be
used when the node is not yet synchronized
- Node:
- Call API.UpdateMetrics and UpdateRecommendedFee in a loop, with
configurable time intervals
- Synchronizer:
- When mapping events by TxHash, use an array to support the possibility
of multiple calls of the same function happening in the same
transaction (for example, a smart contract in a single transaction
could call withdraw with delay twice, which would generate 2 withdraw
events, and 2 deposit events).
- In Stats, keep entire LastBlock instead of just the blockNum
- In Stats, add lastL1BatchBlock
- Test Stats and SCVars
- Coordinator:
- Enable writing the BatchInfo in every step of the pipeline to disk
(with JSON text files) for debugging purposes.
- Move the Pipeline functionality from the Coordinator to its own struct
(Pipeline)
- Implement shouldL1lL2Batch
- In TxManager, implement logic to perform several attempts when doing
ethereum node RPC calls before considering the error. (Both for calls
to forgeBatch and transaction receipt)
- In TxManager, reorganize the flow and note the specific points in
which actions are made when err != nil
- HistoryDB:
- Implement GetLastL1BatchBlockNum: returns the blockNum of the latest
forged l1Batch, to help the coordinator decide when to forge an
L1Batch.
- EthereumClient and test.Client:
- Update EthBlockByNumber to return the last block when the passed
number is -1.
4 years ago |
|
package synchronizer
import ( "context" "encoding/json" "fmt" "io/ioutil" "math/big" "os" "sort" "testing" "time"
ethCommon "github.com/ethereum/go-ethereum/common" "github.com/hermeznetwork/hermez-node/common" dbUtils "github.com/hermeznetwork/hermez-node/db" "github.com/hermeznetwork/hermez-node/db/historydb" "github.com/hermeznetwork/hermez-node/db/l2db" "github.com/hermeznetwork/hermez-node/db/statedb" "github.com/hermeznetwork/hermez-node/eth" "github.com/hermeznetwork/hermez-node/test" "github.com/hermeznetwork/hermez-node/test/til" "github.com/jinzhu/copier" "github.com/stretchr/testify/assert" "github.com/stretchr/testify/require" )
var tokenConsts = map[common.TokenID]eth.ERC20Consts{}
type timer struct { time int64 }
func (t *timer) Time() int64 { currentTime := t.time t.time++ return currentTime }
func accountsCmp(accounts []common.Account) func(i, j int) bool { return func(i, j int) bool { return accounts[i].Idx < accounts[j].Idx } }
// Check Sync output and HistoryDB state against expected values generated by
// til
func checkSyncBlock(t *testing.T, s *Synchronizer, blockNum int, block, syncBlock *common.BlockData) { // Check Blocks
dbBlocks, err := s.historyDB.GetAllBlocks() require.NoError(t, err) dbBlocks = dbBlocks[1:] // ignore block 0, added by default in the DB
assert.Equal(t, blockNum, len(dbBlocks)) assert.Equal(t, int64(blockNum), dbBlocks[blockNum-1].Num) assert.NotEqual(t, dbBlocks[blockNum-1].Hash, dbBlocks[blockNum-2].Hash) assert.Greater(t, dbBlocks[blockNum-1].Timestamp.Unix(), dbBlocks[blockNum-2].Timestamp.Unix())
// Check Tokens
assert.Equal(t, len(block.Rollup.AddedTokens), len(syncBlock.Rollup.AddedTokens)) dbTokens, err := s.historyDB.GetAllTokens() require.NoError(t, err) dbTokens = dbTokens[1:] // ignore token 0, added by default in the DB
for i, token := range block.Rollup.AddedTokens { dbToken := dbTokens[i] syncToken := syncBlock.Rollup.AddedTokens[i]
assert.Equal(t, block.Block.Num, syncToken.EthBlockNum) assert.Equal(t, token.TokenID, syncToken.TokenID) assert.Equal(t, token.EthAddr, syncToken.EthAddr) tokenConst := tokenConsts[token.TokenID] assert.Equal(t, tokenConst.Name, syncToken.Name) assert.Equal(t, tokenConst.Symbol, syncToken.Symbol) assert.Equal(t, tokenConst.Decimals, syncToken.Decimals)
var tokenCpy historydb.TokenWithUSD //nolint:gosec
require.Nil(t, copier.Copy(&tokenCpy, &token)) // copy common.Token to historydb.TokenWithUSD
require.Nil(t, copier.Copy(&tokenCpy, &tokenConst)) // copy common.Token to historydb.TokenWithUSD
tokenCpy.ItemID = dbToken.ItemID // we don't care about ItemID
assert.Equal(t, tokenCpy, dbToken) }
// Check submitted L1UserTxs
assert.Equal(t, len(block.Rollup.L1UserTxs), len(syncBlock.Rollup.L1UserTxs)) dbL1UserTxs, err := s.historyDB.GetAllL1UserTxs() require.NoError(t, err) // Ignore BatchNum in syncBlock.L1UserTxs because this value is set by
// the HistoryDB. Also ignore EffectiveAmount & EffectiveDepositAmount
// because this value is set by StateDB.ProcessTxs.
for i := range syncBlock.Rollup.L1UserTxs { syncBlock.Rollup.L1UserTxs[i].BatchNum = block.Rollup.L1UserTxs[i].BatchNum assert.Nil(t, syncBlock.Rollup.L1UserTxs[i].EffectiveDepositAmount) assert.Nil(t, syncBlock.Rollup.L1UserTxs[i].EffectiveAmount) } assert.Equal(t, block.Rollup.L1UserTxs, syncBlock.Rollup.L1UserTxs) for _, tx := range block.Rollup.L1UserTxs { var dbTx *common.L1Tx // Find tx in DB output
for _, _dbTx := range dbL1UserTxs { if *tx.ToForgeL1TxsNum == *_dbTx.ToForgeL1TxsNum && tx.Position == _dbTx.Position { dbTx = new(common.L1Tx) *dbTx = _dbTx // NOTE: Overwrite EffectiveFromIdx in L1UserTx
// from db because we don't expect
// EffectiveFromIdx to be set yet, as this tx
// is not in yet forged
dbTx.EffectiveFromIdx = 0 break } } // If the tx has been forged in this block, this will be
// reflected in the DB, and so the Effective values will be
// already set
if dbTx.BatchNum != nil { tx.EffectiveAmount = tx.Amount tx.EffectiveDepositAmount = tx.DepositAmount } assert.Equal(t, &tx, dbTx) //nolint:gosec
}
// Check Batches
assert.Equal(t, len(block.Rollup.Batches), len(syncBlock.Rollup.Batches)) dbBatches, err := s.historyDB.GetAllBatches() require.NoError(t, err)
dbL1CoordinatorTxs, err := s.historyDB.GetAllL1CoordinatorTxs() require.NoError(t, err) dbL2Txs, err := s.historyDB.GetAllL2Txs() require.NoError(t, err) dbExits, err := s.historyDB.GetAllExits() require.NoError(t, err) // dbL1CoordinatorTxs := []common.L1Tx{}
for i, batch := range block.Rollup.Batches { var dbBatch *common.Batch // Find batch in DB output
for _, _dbBatch := range dbBatches { if batch.Batch.BatchNum == _dbBatch.BatchNum { dbBatch = new(common.Batch) *dbBatch = _dbBatch break } } syncBatch := syncBlock.Rollup.Batches[i]
// We don't care about TotalFeesUSD. Use the syncBatch that
// has a TotalFeesUSD inserted by the HistoryDB
batch.Batch.TotalFeesUSD = syncBatch.Batch.TotalFeesUSD assert.Equal(t, batch.CreatedAccounts, syncBatch.CreatedAccounts) batch.Batch.NumAccounts = len(batch.CreatedAccounts)
// Test field by field to facilitate debugging of errors
assert.Equal(t, len(batch.L1UserTxs), len(syncBatch.L1UserTxs)) // NOTE: EffectiveFromIdx is set to til L1UserTxs in
// `FillBlocksForgedL1UserTxs` function
for j := range syncBatch.L1UserTxs { assert.NotEqual(t, 0, syncBatch.L1UserTxs[j].EffectiveFromIdx) } assert.Equal(t, batch.L1UserTxs, syncBatch.L1UserTxs) // NOTE: EffectiveFromIdx is set to til L1CoordinatorTxs in
// `FillBlocksExtra` function
for j := range syncBatch.L1CoordinatorTxs { assert.NotEqual(t, 0, syncBatch.L1CoordinatorTxs[j].EffectiveFromIdx) } assert.Equal(t, batch.L1CoordinatorTxs, syncBatch.L1CoordinatorTxs) assert.Equal(t, batch.L2Txs, syncBatch.L2Txs) // In exit tree, we only check AccountIdx and Balance, because
// it's what we have precomputed before.
require.Equal(t, len(batch.ExitTree), len(syncBatch.ExitTree)) for j := range batch.ExitTree { exit := &batch.ExitTree[j] assert.Equal(t, exit.AccountIdx, syncBatch.ExitTree[j].AccountIdx) assert.Equal(t, exit.Balance, syncBatch.ExitTree[j].Balance) *exit = syncBatch.ExitTree[j] } assert.Equal(t, batch.Batch, syncBatch.Batch) // Ignore updated accounts
syncBatch.UpdatedAccounts = nil assert.Equal(t, batch, syncBatch) assert.Equal(t, &batch.Batch, dbBatch) //nolint:gosec
// Check forged L1UserTxs from DB, and check effective values
// in sync output
for j, tx := range batch.L1UserTxs { var dbTx *common.L1Tx // Find tx in DB output
for _, _dbTx := range dbL1UserTxs { if *tx.BatchNum == *_dbTx.BatchNum && tx.Position == _dbTx.Position { dbTx = new(common.L1Tx) *dbTx = _dbTx break } } assert.Equal(t, &tx, dbTx) //nolint:gosec
syncTx := &syncBlock.Rollup.Batches[i].L1UserTxs[j] assert.Equal(t, syncTx.DepositAmount, syncTx.EffectiveDepositAmount) assert.Equal(t, syncTx.Amount, syncTx.EffectiveAmount) }
// Check L1CoordinatorTxs from DB
for _, tx := range batch.L1CoordinatorTxs { var dbTx *common.L1Tx // Find tx in DB output
for _, _dbTx := range dbL1CoordinatorTxs { if *tx.BatchNum == *_dbTx.BatchNum && tx.Position == _dbTx.Position { dbTx = new(common.L1Tx) *dbTx = _dbTx break } } assert.Equal(t, &tx, dbTx) //nolint:gosec
}
// Check L2Txs from DB
for _, tx := range batch.L2Txs { var dbTx *common.L2Tx // Find tx in DB output
for _, _dbTx := range dbL2Txs { if tx.BatchNum == _dbTx.BatchNum && tx.Position == _dbTx.Position { dbTx = new(common.L2Tx) *dbTx = _dbTx break } } assert.Equal(t, &tx, dbTx) //nolint:gosec
}
// Check Exits from DB
for _, exit := range batch.ExitTree { var dbExit *common.ExitInfo // Find exit in DB output
for _, _dbExit := range dbExits { if exit.BatchNum == _dbExit.BatchNum && exit.AccountIdx == _dbExit.AccountIdx { dbExit = new(common.ExitInfo) *dbExit = _dbExit break } } // Compare MerkleProof in JSON because unmarshaled 0
// big.Int leaves the internal big.Int array at nil,
// and gives trouble when comparing big.Int with
// internal big.Int array != nil but empty.
mtp, err := json.Marshal(exit.MerkleProof) require.NoError(t, err) dbMtp, err := json.Marshal(dbExit.MerkleProof) require.NoError(t, err) assert.Equal(t, mtp, dbMtp) dbExit.MerkleProof = exit.MerkleProof assert.Equal(t, &exit, dbExit) //nolint:gosec
} }
// Compare accounts from HistoryDB with StateDB (they should match)
dbAccounts, err := s.historyDB.GetAllAccounts() require.NoError(t, err) sdbAccounts, err := s.stateDB.TestGetAccounts() require.NoError(t, err) assertEqualAccountsHistoryDBStateDB(t, dbAccounts, sdbAccounts) }
func assertEqualAccountsHistoryDBStateDB(t *testing.T, hdbAccs, sdbAccs []common.Account) { assert.Equal(t, len(hdbAccs), len(sdbAccs)) sort.SliceStable(hdbAccs, accountsCmp(hdbAccs)) sort.SliceStable(sdbAccs, accountsCmp(sdbAccs)) for i := range hdbAccs { hdbAcc := hdbAccs[i] sdbAcc := sdbAccs[i] assert.Equal(t, hdbAcc.Idx, sdbAcc.Idx) assert.Equal(t, hdbAcc.TokenID, sdbAcc.TokenID) assert.Equal(t, hdbAcc.EthAddr, sdbAcc.EthAddr) assert.Equal(t, hdbAcc.BJJ, sdbAcc.BJJ) } }
// ethAddTokens adds the tokens from the blocks to the blockchain
func ethAddTokens(blocks []common.BlockData, client *test.Client) { for _, block := range blocks { for _, token := range block.Rollup.AddedTokens { consts := eth.ERC20Consts{ Name: fmt.Sprintf("Token %d", token.TokenID), Symbol: fmt.Sprintf("TK%d", token.TokenID), Decimals: 18, } tokenConsts[token.TokenID] = consts client.CtlAddERC20(token.EthAddr, consts) } } }
var chainID uint16 = 0 var deleteme = []string{}
func TestMain(m *testing.M) { exitVal := m.Run() for _, dir := range deleteme { if err := os.RemoveAll(dir); err != nil { panic(err) } } os.Exit(exitVal) }
func newTestModules(t *testing.T) (*statedb.StateDB, *historydb.HistoryDB, *l2db.L2DB) { // Int State DB
dir, err := ioutil.TempDir("", "tmpdb") require.NoError(t, err) deleteme = append(deleteme, dir)
stateDB, err := statedb.NewStateDB(statedb.Config{Path: dir, Keep: 128, Type: statedb.TypeSynchronizer, NLevels: 32}) require.NoError(t, err)
// Init History DB
pass := os.Getenv("POSTGRES_PASS") db, err := dbUtils.InitSQLDB(5432, "localhost", "hermez", pass, "hermez") require.NoError(t, err) historyDB := historydb.NewHistoryDB(db, db, nil) // Clear DB
test.WipeDB(historyDB.DB())
// Init L2 DB
l2DB := l2db.NewL2DB(db, db, 10, 100, 0.0, 24*time.Hour, nil)
return stateDB, historyDB, l2DB }
func newBigInt(s string) *big.Int { v, ok := new(big.Int).SetString(s, 10) if !ok { panic(fmt.Errorf("Can't set big.Int from %s", s)) } return v }
func TestSyncGeneral(t *testing.T) { //
// Setup
//
stateDB, historyDB, l2DB := newTestModules(t)
// Init eth client
var timer timer clientSetup := test.NewClientSetupExample() clientSetup.ChainID = big.NewInt(int64(chainID)) bootCoordAddr := clientSetup.AuctionVariables.BootCoordinator client := test.NewClient(true, &timer, ðCommon.Address{}, clientSetup)
// Create Synchronizer
s, err := NewSynchronizer(client, historyDB, l2DB, stateDB, Config{ StatsRefreshPeriod: 0 * time.Second, }) require.NoError(t, err)
ctx := context.Background()
//
// First Sync from an initial state
//
stats := s.Stats() assert.Equal(t, false, stats.Synced())
// Test Sync for rollup genesis block
syncBlock, discards, err := s.Sync(ctx, nil) require.NoError(t, err) require.Nil(t, discards) require.NotNil(t, syncBlock) require.Nil(t, syncBlock.Rollup.Vars) require.Nil(t, syncBlock.Auction.Vars) require.Nil(t, syncBlock.WDelayer.Vars) assert.Equal(t, int64(1), syncBlock.Block.Num) stats = s.Stats() assert.Equal(t, int64(1), stats.Eth.FirstBlockNum) assert.Equal(t, int64(1), stats.Eth.LastBlock.Num) assert.Equal(t, int64(1), stats.Sync.LastBlock.Num) vars := s.SCVars() assert.Equal(t, clientSetup.RollupVariables, vars.Rollup) assert.Equal(t, clientSetup.AuctionVariables, vars.Auction) assert.Equal(t, clientSetup.WDelayerVariables, vars.WDelayer)
dbBlocks, err := s.historyDB.GetAllBlocks() require.NoError(t, err) assert.Equal(t, 2, len(dbBlocks)) assert.Equal(t, int64(1), dbBlocks[1].Num)
// Sync again and expect no new blocks
syncBlock, discards, err = s.Sync(ctx, nil) require.NoError(t, err) require.Nil(t, discards) require.Nil(t, syncBlock)
//
// Generate blockchain and smart contract data, and fill the test smart contracts
//
// Generate blockchain data with til
set1 := ` Type: Blockchain
AddToken(1) AddToken(2) AddToken(3)
CreateAccountDeposit(1) C: 2000 // Idx=256+2=258
CreateAccountDeposit(2) A: 2000 // Idx=256+3=259
CreateAccountDeposit(1) D: 500 // Idx=256+4=260
CreateAccountDeposit(2) B: 500 // Idx=256+5=261
CreateAccountDeposit(2) C: 500 // Idx=256+6=262
CreateAccountCoordinator(1) A // Idx=256+0=256
CreateAccountCoordinator(1) B // Idx=256+1=257
> batchL1 // forge L1UserTxs{nil}, freeze defined L1UserTxs{5}
> batchL1 // forge defined L1UserTxs{5}, freeze L1UserTxs{nil}
> block // blockNum=2
CreateAccountDepositTransfer(1) E-A: 1000, 200 // Idx=256+7=263
ForceTransfer(1) C-B: 80 ForceExit(1) A: 100 ForceExit(1) B: 80 ForceTransfer(1) A-D: 100
Transfer(1) C-A: 100 (126) Exit(1) C: 50 (100) Exit(1) D: 30 (100)
> batchL1 // forge L1UserTxs{nil}, freeze defined L1UserTxs{3}
> batchL1 // forge L1UserTxs{3}, freeze defined L1UserTxs{nil}
> block // blockNum=3
` tc := til.NewContext(chainID, common.RollupConstMaxL1UserTx) tilCfgExtra := til.ConfigExtra{ BootCoordAddr: bootCoordAddr, CoordUser: "A", } blocks, err := tc.GenerateBlocks(set1) require.NoError(t, err) // Sanity check
require.Equal(t, 2, len(blocks)) // blocks 0 (blockNum=2)
i := 0 require.Equal(t, 2, int(blocks[i].Block.Num)) require.Equal(t, 3, len(blocks[i].Rollup.AddedTokens)) require.Equal(t, 5, len(blocks[i].Rollup.L1UserTxs)) require.Equal(t, 2, len(blocks[i].Rollup.Batches)) require.Equal(t, 2, len(blocks[i].Rollup.Batches[0].L1CoordinatorTxs)) // Set StateRoots for batches manually (til doesn't set it)
blocks[i].Rollup.Batches[0].Batch.StateRoot = newBigInt("11432094872416618651837327395264042968926668786266585816625577088890451620254") blocks[i].Rollup.Batches[1].Batch.StateRoot = newBigInt("16914212635847451457076355431350059348585556180740555407203882688922702410093") // blocks 1 (blockNum=3)
i = 1 require.Equal(t, 3, int(blocks[i].Block.Num)) require.Equal(t, 5, len(blocks[i].Rollup.L1UserTxs)) require.Equal(t, 2, len(blocks[i].Rollup.Batches)) require.Equal(t, 3, len(blocks[i].Rollup.Batches[0].L2Txs)) // Set StateRoots for batches manually (til doesn't set it)
blocks[i].Rollup.Batches[0].Batch.StateRoot = newBigInt("13535760140937349829640752733057594576151546047374619177689224612061148090678") blocks[i].Rollup.Batches[1].Batch.StateRoot = newBigInt("19413739476363469870744893742469056615496274423228302914851564791727474664804")
// Generate extra required data
ethAddTokens(blocks, client)
err = tc.FillBlocksExtra(blocks, &tilCfgExtra) require.NoError(t, err) tc.FillBlocksL1UserTxsBatchNum(blocks) err = tc.FillBlocksForgedL1UserTxs(blocks) require.NoError(t, err)
// Add block data to the smart contracts
err = client.CtlAddBlocks(blocks) require.NoError(t, err)
//
// Sync to synchronize the current state from the test smart contracts,
// and check the outcome
//
// Block 2
syncBlock, discards, err = s.Sync(ctx, nil) require.NoError(t, err) require.Nil(t, discards) require.NotNil(t, syncBlock) assert.Nil(t, syncBlock.Rollup.Vars) assert.Nil(t, syncBlock.Auction.Vars) assert.Nil(t, syncBlock.WDelayer.Vars) assert.Equal(t, int64(2), syncBlock.Block.Num) stats = s.Stats() assert.Equal(t, int64(1), stats.Eth.FirstBlockNum) assert.Equal(t, int64(3), stats.Eth.LastBlock.Num) assert.Equal(t, int64(2), stats.Sync.LastBlock.Num)
checkSyncBlock(t, s, 2, &blocks[0], syncBlock)
// Block 3
syncBlock, discards, err = s.Sync(ctx, nil) assert.NoError(t, err) require.NoError(t, err) require.Nil(t, discards) require.NotNil(t, syncBlock) assert.Nil(t, syncBlock.Rollup.Vars) assert.Nil(t, syncBlock.Auction.Vars) assert.Nil(t, syncBlock.WDelayer.Vars) assert.Equal(t, int64(3), syncBlock.Block.Num) stats = s.Stats() assert.Equal(t, int64(1), stats.Eth.FirstBlockNum) assert.Equal(t, int64(3), stats.Eth.LastBlock.Num) assert.Equal(t, int64(3), stats.Sync.LastBlock.Num)
checkSyncBlock(t, s, 3, &blocks[1], syncBlock)
// Block 4
// Generate 2 withdraws manually
_, err = client.RollupWithdrawMerkleProof(tc.Users["A"].BJJ.Public().Compress(), 1, 4, 256, big.NewInt(100), []*big.Int{}, true) require.NoError(t, err) _, err = client.RollupWithdrawMerkleProof(tc.Users["C"].BJJ.Public().Compress(), 1, 3, 258, big.NewInt(50), []*big.Int{}, false) require.NoError(t, err) client.CtlMineBlock()
syncBlock, discards, err = s.Sync(ctx, nil) require.NoError(t, err) require.Nil(t, discards) require.NotNil(t, syncBlock) assert.Nil(t, syncBlock.Rollup.Vars) assert.Nil(t, syncBlock.Auction.Vars) assert.Nil(t, syncBlock.WDelayer.Vars) assert.Equal(t, int64(4), syncBlock.Block.Num) stats = s.Stats() assert.Equal(t, int64(1), stats.Eth.FirstBlockNum) assert.Equal(t, int64(4), stats.Eth.LastBlock.Num) assert.Equal(t, int64(4), stats.Sync.LastBlock.Num) vars = s.SCVars() assert.Equal(t, clientSetup.RollupVariables, vars.Rollup) assert.Equal(t, clientSetup.AuctionVariables, vars.Auction) assert.Equal(t, clientSetup.WDelayerVariables, vars.WDelayer)
dbExits, err := s.historyDB.GetAllExits() require.NoError(t, err) foundA1, foundC1 := false, false for _, exit := range dbExits { if exit.AccountIdx == 256 && exit.BatchNum == 4 { foundA1 = true assert.Equal(t, int64(4), *exit.InstantWithdrawn) } if exit.AccountIdx == 258 && exit.BatchNum == 3 { foundC1 = true assert.Equal(t, int64(4), *exit.DelayedWithdrawRequest) } } assert.True(t, foundA1) assert.True(t, foundC1)
// Block 5
// Update variables manually
rollupVars, auctionVars, wDelayerVars, err := s.historyDB.GetSCVars() require.NoError(t, err) rollupVars.ForgeL1L2BatchTimeout = 42 _, err = client.RollupUpdateForgeL1L2BatchTimeout(rollupVars.ForgeL1L2BatchTimeout) require.NoError(t, err)
auctionVars.OpenAuctionSlots = 17 _, err = client.AuctionSetOpenAuctionSlots(auctionVars.OpenAuctionSlots) require.NoError(t, err)
wDelayerVars.WithdrawalDelay = 99 _, err = client.WDelayerChangeWithdrawalDelay(wDelayerVars.WithdrawalDelay) require.NoError(t, err)
client.CtlMineBlock()
syncBlock, discards, err = s.Sync(ctx, nil) require.NoError(t, err) require.Nil(t, discards) require.NotNil(t, syncBlock) assert.NotNil(t, syncBlock.Rollup.Vars) assert.NotNil(t, syncBlock.Auction.Vars) assert.NotNil(t, syncBlock.WDelayer.Vars) assert.Equal(t, int64(5), syncBlock.Block.Num) stats = s.Stats() assert.Equal(t, int64(1), stats.Eth.FirstBlockNum) assert.Equal(t, int64(5), stats.Eth.LastBlock.Num) assert.Equal(t, int64(5), stats.Sync.LastBlock.Num) vars = s.SCVars() assert.NotEqual(t, clientSetup.RollupVariables, vars.Rollup) assert.NotEqual(t, clientSetup.AuctionVariables, vars.Auction) assert.NotEqual(t, clientSetup.WDelayerVariables, vars.WDelayer)
dbRollupVars, dbAuctionVars, dbWDelayerVars, err := s.historyDB.GetSCVars() require.NoError(t, err) // Set EthBlockNum for Vars to the blockNum in which they were updated (should be 5)
rollupVars.EthBlockNum = syncBlock.Block.Num auctionVars.EthBlockNum = syncBlock.Block.Num wDelayerVars.EthBlockNum = syncBlock.Block.Num assert.Equal(t, rollupVars, dbRollupVars) assert.Equal(t, auctionVars, dbAuctionVars) assert.Equal(t, wDelayerVars, dbWDelayerVars)
//
// Reorg test
//
// Redo blocks 2-5 (as a reorg) only leaving:
// - 2 create account transactions
// - 2 add tokens
// We add a 6th block so that the synchronizer can detect the reorg
set2 := ` Type: Blockchain
AddToken(1) AddToken(2)
CreateAccountDeposit(1) C: 2000 // Idx=256+1=257
CreateAccountCoordinator(1) A // Idx=256+0=256
> batchL1 // forge L1UserTxs{nil}, freeze defined L1UserTxs{1}
> batchL1 // forge defined L1UserTxs{1}, freeze L1UserTxs{nil}
> block // blockNum=2
> block // blockNum=3
> block // blockNum=4
> block // blockNum=5
> block // blockNum=6
` tc = til.NewContext(chainID, common.RollupConstMaxL1UserTx) tilCfgExtra = til.ConfigExtra{ BootCoordAddr: bootCoordAddr, CoordUser: "A", } blocks, err = tc.GenerateBlocks(set2) require.NoError(t, err)
// Set StateRoots for batches manually (til doesn't set it)
blocks[0].Rollup.Batches[0].Batch.StateRoot = newBigInt("14095767774967159269372103336737817266053275274769794195030162905513860477094") blocks[0].Rollup.Batches[1].Batch.StateRoot = newBigInt("2095674348545184674850951945506660952512376416769035169971006930847780339914")
for i := 0; i < 4; i++ { client.CtlRollback() } block := client.CtlLastBlock() require.Equal(t, int64(1), block.Num)
// Generate extra required data
ethAddTokens(blocks, client)
err = tc.FillBlocksExtra(blocks, &tilCfgExtra) require.NoError(t, err) tc.FillBlocksL1UserTxsBatchNum(blocks)
// Add block data to the smart contracts
err = client.CtlAddBlocks(blocks) require.NoError(t, err)
// First sync detects the reorg and discards 4 blocks
syncBlock, discards, err = s.Sync(ctx, nil) require.NoError(t, err) expetedDiscards := int64(4) require.Equal(t, &expetedDiscards, discards) require.Nil(t, syncBlock) stats = s.Stats() assert.Equal(t, false, stats.Synced()) assert.Equal(t, int64(6), stats.Eth.LastBlock.Num) vars = s.SCVars() assert.Equal(t, clientSetup.RollupVariables, vars.Rollup) assert.Equal(t, clientSetup.AuctionVariables, vars.Auction) assert.Equal(t, clientSetup.WDelayerVariables, vars.WDelayer)
// At this point, the DB only has data up to block 1
dbBlock, err := s.historyDB.GetLastBlock() require.NoError(t, err) assert.Equal(t, int64(1), dbBlock.Num)
// Accounts in HistoryDB and StateDB must be empty
dbAccounts, err := s.historyDB.GetAllAccounts() require.NoError(t, err) sdbAccounts, err := s.stateDB.TestGetAccounts() require.NoError(t, err) assert.Equal(t, 0, len(dbAccounts)) assertEqualAccountsHistoryDBStateDB(t, dbAccounts, sdbAccounts)
// Sync blocks 2-6
for i := 0; i < 5; i++ { syncBlock, discards, err = s.Sync(ctx, nil) require.NoError(t, err) require.Nil(t, discards) require.NotNil(t, syncBlock) assert.Nil(t, syncBlock.Rollup.Vars) assert.Nil(t, syncBlock.Auction.Vars) assert.Nil(t, syncBlock.WDelayer.Vars) assert.Equal(t, int64(2+i), syncBlock.Block.Num)
stats = s.Stats() assert.Equal(t, int64(1), stats.Eth.FirstBlockNum) assert.Equal(t, int64(6), stats.Eth.LastBlock.Num) assert.Equal(t, int64(2+i), stats.Sync.LastBlock.Num) if i == 4 { assert.Equal(t, true, stats.Synced()) } else { assert.Equal(t, false, stats.Synced()) }
vars = s.SCVars() assert.Equal(t, clientSetup.RollupVariables, vars.Rollup) assert.Equal(t, clientSetup.AuctionVariables, vars.Auction) assert.Equal(t, clientSetup.WDelayerVariables, vars.WDelayer) }
dbBlock, err = s.historyDB.GetLastBlock() require.NoError(t, err) assert.Equal(t, int64(6), dbBlock.Num)
// Accounts in HistoryDB and StateDB is only 2 entries
dbAccounts, err = s.historyDB.GetAllAccounts() require.NoError(t, err) sdbAccounts, err = s.stateDB.TestGetAccounts() require.NoError(t, err) assert.Equal(t, 2, len(dbAccounts)) assertEqualAccountsHistoryDBStateDB(t, dbAccounts, sdbAccounts) }
func TestSyncForgerCommitment(t *testing.T) { stateDB, historyDB, l2DB := newTestModules(t)
// Init eth client
var timer timer clientSetup := test.NewClientSetupExample() clientSetup.ChainID = big.NewInt(int64(chainID)) clientSetup.AuctionConstants.GenesisBlockNum = 2 clientSetup.AuctionConstants.BlocksPerSlot = 4 clientSetup.AuctionVariables.SlotDeadline = 2 bootCoordAddr := clientSetup.AuctionVariables.BootCoordinator client := test.NewClient(true, &timer, ðCommon.Address{}, clientSetup)
// Create Synchronizer
s, err := NewSynchronizer(client, historyDB, l2DB, stateDB, Config{ StatsRefreshPeriod: 0 * time.Second, }) require.NoError(t, err)
ctx := context.Background()
set := ` Type: Blockchain
// Slot = 0
> block // 2
> block // 3
> block // 4
> block // 5
// Slot = 1
> block // 6
> batch > block // 7
> block // 8
> block // 9
// Slot = 2
> block // 10
> block // 11
> batch > block // 12
> block // 13
` // For each block, true when the slot that belongs to the following
// block has forgerCommitment
commitment := map[int64]bool{ 2: false, 3: false, 4: false, 5: false,
6: false, 7: true, 8: true, 9: false,
10: false, 11: false, 12: false, 13: false, } tc := til.NewContext(chainID, common.RollupConstMaxL1UserTx) blocks, err := tc.GenerateBlocks(set) assert.NoError(t, err)
tilCfgExtra := til.ConfigExtra{ BootCoordAddr: bootCoordAddr, CoordUser: "A", } err = tc.FillBlocksExtra(blocks, &tilCfgExtra) require.NoError(t, err)
// for i := range blocks {
// for j := range blocks[i].Rollup.Batches {
// blocks[i].Rollup.Batches[j].Batch.SlotNum = int64(i) / 4
// }
// }
// be in sync
for { syncBlock, discards, err := s.Sync(ctx, nil) require.NoError(t, err) require.Nil(t, discards) if syncBlock == nil { break } } stats := s.Stats() require.Equal(t, int64(1), stats.Sync.LastBlock.Num)
// Store ForgerComitmnent observed at every block by the live synchronizer
syncCommitment := map[int64]bool{} // Store ForgerComitmnent observed at every block by a synchronizer that is restarted
syncRestartedCommitment := map[int64]bool{} for _, block := range blocks { // Add block data to the smart contracts
err = client.CtlAddBlocks([]common.BlockData{block}) require.NoError(t, err)
syncBlock, discards, err := s.Sync(ctx, nil) require.NoError(t, err) require.Nil(t, discards) if syncBlock == nil { break } stats := s.Stats() require.True(t, stats.Synced()) syncCommitment[syncBlock.Block.Num] = stats.Sync.Auction.CurrentSlot.ForgerCommitment
s2, err := NewSynchronizer(client, historyDB, l2DB, stateDB, Config{ StatsRefreshPeriod: 0 * time.Second, }) require.NoError(t, err) stats = s2.Stats() require.True(t, stats.Synced()) syncRestartedCommitment[syncBlock.Block.Num] = stats.Sync.Auction.CurrentSlot.ForgerCommitment } assert.Equal(t, commitment, syncCommitment) assert.Equal(t, commitment, syncRestartedCommitment) }
|