Browse Source

refactor permcheck

main
Charles Chen 2 years ago
committed by chancharles92
parent
commit
5e782910d4
5 changed files with 187 additions and 101 deletions
  1. +3
    -2
      arithmetic/src/lib.rs
  2. +42
    -0
      arithmetic/src/multilinear_polynomial.rs
  3. +3
    -3
      hyperplonk/src/snark.rs
  4. +97
    -62
      subroutines/src/poly_iop/perm_check/mod.rs
  5. +42
    -34
      subroutines/src/poly_iop/perm_check/util.rs

+ 3
- 2
arithmetic/src/lib.rs

@ -7,8 +7,9 @@ mod virtual_polynomial;
pub use errors::ArithErrors; pub use errors::ArithErrors;
pub use multilinear_polynomial::{ pub use multilinear_polynomial::{
evaluate_no_par, evaluate_opt, fix_last_variables, fix_last_variables_no_par, fix_variables, evaluate_no_par, evaluate_opt, fix_last_variables, fix_last_variables_no_par, fix_variables,
identity_permutation_mle, merge_polynomials, random_mle_list, random_permutation_mle,
random_zero_mle_list, DenseMultilinearExtension,
identity_permutation_mle, identity_permutation_mles, merge_polynomials, random_mle_list,
random_permutation_mle, random_permutation_mles, random_zero_mle_list,
DenseMultilinearExtension,
}; };
pub use univariate_polynomial::{build_l, get_uni_domain}; pub use univariate_polynomial::{build_l, get_uni_domain};
pub use util::{bit_decompose, gen_eval_point, get_batched_nv, get_index}; pub use util::{bit_decompose, gen_eval_point, get_batched_nv, get_index};

+ 42
- 0
arithmetic/src/multilinear_polynomial.rs

@ -73,6 +73,7 @@ pub fn random_zero_mle_list(
} }
/// An MLE that represent an identity permutation: `f(index) \mapto index` /// An MLE that represent an identity permutation: `f(index) \mapto index`
/// TODO(binyi): remove
pub fn identity_permutation_mle<F: PrimeField>( pub fn identity_permutation_mle<F: PrimeField>(
num_vars: usize, num_vars: usize,
) -> Rc<DenseMultilinearExtension<F>> { ) -> Rc<DenseMultilinearExtension<F>> {
@ -83,6 +84,7 @@ pub fn identity_permutation_mle(
} }
/// An MLE that represent a random permutation /// An MLE that represent a random permutation
/// TODO(binyi): remove
pub fn random_permutation_mle<F: PrimeField, R: RngCore>( pub fn random_permutation_mle<F: PrimeField, R: RngCore>(
num_vars: usize, num_vars: usize,
rng: &mut R, rng: &mut R,
@ -99,6 +101,46 @@ pub fn random_permutation_mle(
)) ))
} }
/// A list of MLEs that represents an identity permutation
pub fn identity_permutation_mles<F: PrimeField>(
num_vars: usize,
num_chunks: usize,
) -> Vec<Rc<DenseMultilinearExtension<F>>> {
let mut res = vec![];
for i in 0..num_chunks {
let shift = (i * (1 << num_vars)) as u64;
let s_id_vec = (shift..shift + (1u64 << num_vars)).map(F::from).collect();
res.push(Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars, s_id_vec,
)));
}
res
}
/// A list of MLEs that represent a random permutation
pub fn random_permutation_mles<F: PrimeField, R: RngCore>(
num_vars: usize,
num_chunks: usize,
rng: &mut R,
) -> Vec<Rc<DenseMultilinearExtension<F>>> {
let len = (num_chunks as u64) * (1u64 << num_vars);
let mut s_id_vec: Vec<F> = (0..len).map(F::from).collect();
let mut s_perm_vec = vec![];
for _ in 0..len {
let index = rng.next_u64() as usize % s_id_vec.len();
s_perm_vec.push(s_id_vec.remove(index));
}
let mut res = vec![];
let n = 1 << num_vars;
for i in 0..num_chunks {
res.push(Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars,
s_perm_vec[i * n..i * n + n].to_vec(),
)));
}
res
}
pub fn evaluate_opt<F: Field>(poly: &DenseMultilinearExtension<F>, point: &[F]) -> F { pub fn evaluate_opt<F: Field>(poly: &DenseMultilinearExtension<F>, point: &[F]) -> F {
assert_eq!(poly.num_vars, point.len()); assert_eq!(poly.num_vars, point.len());
fix_variables(poly, point).evaluations[0] fix_variables(poly, point).evaluations[0]

+ 3
- 3
hyperplonk/src/snark.rs

@ -244,9 +244,9 @@ where
let (perm_check_proof, prod_x) = <Self as PermutationCheck<E, PCS>>::prove( let (perm_check_proof, prod_x) = <Self as PermutationCheck<E, PCS>>::prove(
&pk.pcs_param, &pk.pcs_param,
&w_merged,
&w_merged,
&pk.permutation_oracle,
&[w_merged.clone()],
&[w_merged.clone()],
&[pk.permutation_oracle.clone()],
&mut transcript, &mut transcript,
)?; )?;
let perm_check_point = &perm_check_proof.zero_check_proof.point; let perm_check_point = &perm_check_proof.zero_check_proof.point;

+ 97
- 62
subroutines/src/poly_iop/perm_check/mod.rs

@ -1,6 +1,6 @@
//! Main module for the Permutation Check protocol //! Main module for the Permutation Check protocol
use self::util::computer_num_and_denom;
use self::util::computer_nums_and_denoms;
use crate::{ use crate::{
pcs::PolynomialCommitmentScheme, pcs::PolynomialCommitmentScheme,
poly_iop::{errors::PolyIOPErrors, prelude::ProductCheck, PolyIOP}, poly_iop::{errors::PolyIOPErrors, prelude::ProductCheck, PolyIOP},
@ -29,17 +29,17 @@ where
pub mod util; pub mod util;
/// A PermutationCheck w.r.t. `(f, g, perm)`
/// proves that g is a permutation of f under
/// permutation `perm`
/// A PermutationCheck w.r.t. `(fs, gs, perms)`
/// proves that (g1, ..., gk) is a permutation of (f1, ..., fk) under
/// permutation `(p1, ..., pk)`
/// It is derived from ProductCheck. /// It is derived from ProductCheck.
/// ///
/// A Permutation Check IOP takes the following steps: /// A Permutation Check IOP takes the following steps:
/// ///
/// Inputs: /// Inputs:
/// - f(x)
/// - g(x)
/// - permutation s_perm(x)
/// - fs = (f1, ..., fk)
/// - gs = (g1, ..., gk)
/// - permutation oracles = (p1, ..., pk)
pub trait PermutationCheck<E, PCS>: ProductCheck<E, PCS> pub trait PermutationCheck<E, PCS>: ProductCheck<E, PCS>
where where
E: PairingEngine, E: PairingEngine,
@ -57,25 +57,25 @@ where
fn init_transcript() -> Self::Transcript; fn init_transcript() -> Self::Transcript;
/// Inputs: /// Inputs:
/// - f(x)
/// - g(x)
/// - permutation s_perm(x)
/// - fs = (f1, ..., fk)
/// - gs = (g1, ..., gk)
/// - permutation oracles = (p1, ..., pk)
/// Outputs: /// Outputs:
/// - a permutation check proof proving that g is a permutation of f under
/// s_perm
/// - the product polynomial build during product check
/// - a permutation check proof proving that gs is a permutation of fs under
/// permutation
/// - the product polynomial build during product check (for testing)
/// ///
/// Cost: O(N) /// Cost: O(N)
fn prove( fn prove(
pcs_param: &PCS::ProverParam, pcs_param: &PCS::ProverParam,
fx: &Self::MultilinearExtension,
gx: &Self::MultilinearExtension,
s_perm: &Self::MultilinearExtension,
fxs: &[Self::MultilinearExtension],
gxs: &[Self::MultilinearExtension],
perms: &[Self::MultilinearExtension],
transcript: &mut IOPTranscript<E::Fr>, transcript: &mut IOPTranscript<E::Fr>,
) -> Result<(Self::PermutationProof, Self::MultilinearExtension), PolyIOPErrors>; ) -> Result<(Self::PermutationProof, Self::MultilinearExtension), PolyIOPErrors>;
/// Verify that an MLE g(x) is a permutation of
/// MLE f(x) over a permutation given by s_perm.
/// Verify that (g1, ..., gk) is a permutation of
/// (f1, ..., fk) over the permutation oracles (perm1, ..., permk)
fn verify( fn verify(
proof: &Self::PermutationProof, proof: &Self::PermutationProof,
aux_info: &Self::VPAuxInfo, aux_info: &Self::VPAuxInfo,
@ -97,34 +97,44 @@ where
fn prove( fn prove(
pcs_param: &PCS::ProverParam, pcs_param: &PCS::ProverParam,
fx: &Self::MultilinearExtension,
gx: &Self::MultilinearExtension,
s_perm: &Self::MultilinearExtension,
fxs: &[Self::MultilinearExtension],
gxs: &[Self::MultilinearExtension],
perms: &[Self::MultilinearExtension],
transcript: &mut IOPTranscript<E::Fr>, transcript: &mut IOPTranscript<E::Fr>,
) -> Result<(Self::PermutationProof, Self::MultilinearExtension), PolyIOPErrors> { ) -> Result<(Self::PermutationProof, Self::MultilinearExtension), PolyIOPErrors> {
let start = start_timer!(|| "Permutation check prove"); let start = start_timer!(|| "Permutation check prove");
if fx.num_vars != gx.num_vars {
return Err(PolyIOPErrors::InvalidParameters(
"fx and gx have different number of variables".to_string(),
));
if fxs.is_empty() {
return Err(PolyIOPErrors::InvalidParameters("fxs is empty".to_string()));
}
if (fxs.len() != gxs.len()) || (fxs.len() != perms.len()) {
return Err(PolyIOPErrors::InvalidProof(format!(
"fxs.len() = {}, gxs.len() = {}, perms.len() = {}",
fxs.len(),
gxs.len(),
perms.len(),
)));
} }
if fx.num_vars != s_perm.num_vars {
return Err(PolyIOPErrors::InvalidParameters(
"fx and s_perm have different number of variables".to_string(),
));
let num_vars = fxs[0].num_vars;
for ((fx, gx), perm) in fxs.iter().zip(gxs.iter()).zip(perms.iter()) {
if (fx.num_vars != num_vars) || (gx.num_vars != num_vars) || (perm.num_vars != num_vars)
{
return Err(PolyIOPErrors::InvalidParameters(
"number of variables unmatched".to_string(),
));
}
} }
// generate challenge `beta` and `gamma` from current transcript // generate challenge `beta` and `gamma` from current transcript
let beta = transcript.get_and_append_challenge(b"beta")?; let beta = transcript.get_and_append_challenge(b"beta")?;
let gamma = transcript.get_and_append_challenge(b"gamma")?; let gamma = transcript.get_and_append_challenge(b"gamma")?;
let (numerator, denominator) = computer_num_and_denom(&beta, &gamma, fx, gx, s_perm)?;
let (numerators, denominators) = computer_nums_and_denoms(&beta, &gamma, fxs, gxs, perms)?;
// invoke product check on numerator and denominator // invoke product check on numerator and denominator
let (proof, prod_poly, _frac_poly) = <Self as ProductCheck<E, PCS>>::prove(
let (proof, prod_poly, _) = <Self as ProductCheck<E, PCS>>::prove(
pcs_param, pcs_param,
&[numerator],
&[denominator],
&numerators,
&denominators,
transcript, transcript,
)?; )?;
@ -132,8 +142,6 @@ where
Ok((proof, prod_poly)) Ok((proof, prod_poly))
} }
/// Verify that an MLE g(x) is a permutation of an
/// MLE f(x) over a permutation given by s_perm.
fn verify( fn verify(
proof: &Self::PermutationProof, proof: &Self::PermutationProof,
aux_info: &Self::VPAuxInfo, aux_info: &Self::VPAuxInfo,
@ -163,7 +171,7 @@ mod test {
pcs::{prelude::MultilinearKzgPCS, PolynomialCommitmentScheme}, pcs::{prelude::MultilinearKzgPCS, PolynomialCommitmentScheme},
poly_iop::{errors::PolyIOPErrors, PolyIOP}, poly_iop::{errors::PolyIOPErrors, PolyIOP},
}; };
use arithmetic::{evaluate_opt, identity_permutation_mle, random_permutation_mle, VPAuxInfo};
use arithmetic::{evaluate_opt, identity_permutation_mles, random_permutation_mles, VPAuxInfo};
use ark_bls12_381::Bls12_381; use ark_bls12_381::Bls12_381;
use ark_ec::PairingEngine; use ark_ec::PairingEngine;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension}; use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
@ -174,17 +182,18 @@ mod test {
fn test_permutation_check_helper<E, PCS>( fn test_permutation_check_helper<E, PCS>(
pcs_param: &PCS::ProverParam, pcs_param: &PCS::ProverParam,
fx: &Rc<DenseMultilinearExtension<E::Fr>>,
gx: &Rc<DenseMultilinearExtension<E::Fr>>,
s_perm: &Rc<DenseMultilinearExtension<E::Fr>>,
fxs: &[Rc<DenseMultilinearExtension<E::Fr>>],
gxs: &[Rc<DenseMultilinearExtension<E::Fr>>],
perms: &[Rc<DenseMultilinearExtension<E::Fr>>],
) -> Result<(), PolyIOPErrors> ) -> Result<(), PolyIOPErrors>
where where
E: PairingEngine, E: PairingEngine,
PCS: PolynomialCommitmentScheme<E, Polynomial = Rc<DenseMultilinearExtension<E::Fr>>>, PCS: PolynomialCommitmentScheme<E, Polynomial = Rc<DenseMultilinearExtension<E::Fr>>>,
{ {
let nv = fx.num_vars;
let nv = fxs[0].num_vars;
// what's AuxInfo used for?
let poly_info = VPAuxInfo { let poly_info = VPAuxInfo {
max_degree: 2,
max_degree: fxs.len() + 1,
num_variables: nv, num_variables: nv,
phantom: PhantomData::default(), phantom: PhantomData::default(),
}; };
@ -194,9 +203,9 @@ mod test {
transcript.append_message(b"testing", b"initializing transcript for testing")?; transcript.append_message(b"testing", b"initializing transcript for testing")?;
let (proof, prod_x) = <PolyIOP<E::Fr> as PermutationCheck<E, PCS>>::prove( let (proof, prod_x) = <PolyIOP<E::Fr> as PermutationCheck<E, PCS>>::prove(
pcs_param, pcs_param,
fx,
gx,
s_perm,
fxs,
gxs,
perms,
&mut transcript, &mut transcript,
)?; )?;
@ -224,40 +233,66 @@ mod test {
fn test_permutation_check(nv: usize) -> Result<(), PolyIOPErrors> { fn test_permutation_check(nv: usize) -> Result<(), PolyIOPErrors> {
let mut rng = test_rng(); let mut rng = test_rng();
let srs = MultilinearKzgPCS::<Bls12_381>::gen_srs_for_testing(&mut rng, nv + 1)?;
let (pcs_param, _) = MultilinearKzgPCS::<Bls12_381>::trim(&srs, None, Some(nv + 1))?;
let srs = MultilinearKzgPCS::<Bls12_381>::gen_srs_for_testing(&mut rng, nv)?;
let (pcs_param, _) = MultilinearKzgPCS::<Bls12_381>::trim(&srs, None, Some(nv))?;
let id_perms = identity_permutation_mles(nv, 2);
{ {
// good path: w is a permutation of w itself under the identify map
let w = Rc::new(DenseMultilinearExtension::rand(nv, &mut rng));
// s_perm is the identity map
let s_perm = identity_permutation_mle(nv);
test_permutation_check_helper::<Bls12_381, KZG>(&pcs_param, &w, &w, &s_perm)?;
// good path: (w1, w2) is a permutation of (w1, w2) itself under the identify
// map
let ws = vec![
Rc::new(DenseMultilinearExtension::rand(nv, &mut rng)),
Rc::new(DenseMultilinearExtension::rand(nv, &mut rng)),
];
// perms is the identity map
test_permutation_check_helper::<Bls12_381, KZG>(&pcs_param, &ws, &ws, &id_perms)?;
}
{
// good path: f = (w1, w2) is a permutation of g = (w2, w1) itself under a map
let mut fs = vec![
Rc::new(DenseMultilinearExtension::rand(nv, &mut rng)),
Rc::new(DenseMultilinearExtension::rand(nv, &mut rng)),
];
let gs = fs.clone();
fs.reverse();
// perms is the reverse identity map
let mut perms = id_perms.clone();
perms.reverse();
test_permutation_check_helper::<Bls12_381, KZG>(&pcs_param, &fs, &gs, &perms)?;
} }
{ {
// bad path 1: w is a not permutation of w itself under a random map // bad path 1: w is a not permutation of w itself under a random map
let w = Rc::new(DenseMultilinearExtension::rand(nv, &mut rng));
// s_perm is a random map
let s_perm = random_permutation_mle(nv, &mut rng);
let ws = vec![
Rc::new(DenseMultilinearExtension::rand(nv, &mut rng)),
Rc::new(DenseMultilinearExtension::rand(nv, &mut rng)),
];
// perms is a random map
let perms = random_permutation_mles(nv, 2, &mut rng);
assert!( assert!(
test_permutation_check_helper::<Bls12_381, KZG>(&pcs_param, &w, &w, &s_perm)
test_permutation_check_helper::<Bls12_381, KZG>(&pcs_param, &ws, &ws, &perms)
.is_err() .is_err()
); );
} }
{ {
// bad path 2: f is a not permutation of g under a identity map // bad path 2: f is a not permutation of g under a identity map
let f = Rc::new(DenseMultilinearExtension::rand(nv, &mut rng));
let g = Rc::new(DenseMultilinearExtension::rand(nv, &mut rng));
let fs = vec![
Rc::new(DenseMultilinearExtension::rand(nv, &mut rng)),
Rc::new(DenseMultilinearExtension::rand(nv, &mut rng)),
];
let gs = vec![
Rc::new(DenseMultilinearExtension::rand(nv, &mut rng)),
Rc::new(DenseMultilinearExtension::rand(nv, &mut rng)),
];
// s_perm is the identity map // s_perm is the identity map
let s_perm = identity_permutation_mle(nv);
assert!(
test_permutation_check_helper::<Bls12_381, KZG>(&pcs_param, &f, &g, &s_perm)
.is_err()
);
assert!(test_permutation_check_helper::<Bls12_381, KZG>(
&pcs_param, &fs, &gs, &id_perms
)
.is_err());
} }
Ok(()) Ok(())

+ 42
- 34
subroutines/src/poly_iop/perm_check/util.rs

@ -1,61 +1,69 @@
//! This module implements useful functions for the permutation check protocol. //! This module implements useful functions for the permutation check protocol.
use crate::poly_iop::errors::PolyIOPErrors; use crate::poly_iop::errors::PolyIOPErrors;
use arithmetic::identity_permutation_mle;
use arithmetic::identity_permutation_mles;
use ark_ff::PrimeField; use ark_ff::PrimeField;
use ark_poly::DenseMultilinearExtension; use ark_poly::DenseMultilinearExtension;
use ark_std::{end_timer, start_timer}; use ark_std::{end_timer, start_timer};
use std::rc::Rc; use std::rc::Rc;
/// Returns the evaluations of two MLEs:
/// - numerator
/// - denominator
/// Returns the evaluations of two list of MLEs:
/// - numerators = (a1, ..., ak)
/// - denominators = (b1, ..., bk)
/// ///
/// where /// where
/// - beta and gamma are challenges /// - beta and gamma are challenges
/// - f(x), g(x), s_id(x), s_perm(x) are mle-s
/// - (f1, ..., fk), (g1, ..., gk),
/// - (s_id1, ..., s_idk), (perm1, ..., permk) are mle-s
/// ///
/// - numerator is the MLE for `f(x) + \beta s_id(x) + \gamma`
/// - denominator is the MLE for `g(x) + \beta s_perm(x) + \gamma`
/// - ai(x) is the MLE for `fi(x) + \beta s_id_i(x) + \gamma`
/// - bi(x) is the MLE for `gi(x) + \beta perm_i(x) + \gamma`
///
/// The caller is responsible for sanity-check
#[allow(clippy::type_complexity)] #[allow(clippy::type_complexity)]
pub(super) fn computer_num_and_denom<F: PrimeField>(
pub(super) fn computer_nums_and_denoms<F: PrimeField>(
beta: &F, beta: &F,
gamma: &F, gamma: &F,
fx: &DenseMultilinearExtension<F>,
gx: &DenseMultilinearExtension<F>,
s_perm: &DenseMultilinearExtension<F>,
fxs: &[Rc<DenseMultilinearExtension<F>>],
gxs: &[Rc<DenseMultilinearExtension<F>>],
perms: &[ class="n">Rc<DenseMultilinearExtension<F>>],
) -> Result< ) -> Result<
( (
Rc<DenseMultilinearExtension<F>>,
Rc<DenseMultilinearExtension<F>>,
Vec<Rc<DenseMultilinearExtension<F>>>,
Vec<Rc<DenseMultilinearExtension<F>>>,
), ),
PolyIOPErrors, PolyIOPErrors,
> { > {
let start = start_timer!(|| "compute numerator and denominator");
let start = start_timer!(|| "compute numerators and denominators");
let num_vars = fx.num_vars;
let mut numerator_evals = vec![];
let mut denominator_evals = vec![];
let s_id = identity_permutation_mle::<F>(num_vars);
let num_vars = fxs[0].num_vars;
let mut numerators = vec![];
let mut denominators = vec![];
let s_ids = identity_permutation_mles::<F>(num_vars, fxs.len());
for l in 0..fxs.len() {
let mut numerator_evals = vec![];
let mut denominator_evals = vec![];
for (&fi, (&gi, (&s_id_i, &s_perm_i))) in
fx.iter().zip(gx.iter().zip(s_id.iter().zip(s_perm.iter())))
{
let numerator = fi + *beta * s_id_i + gamma;
let denominator = gi + *beta * s_perm_i + gamma;
for (&f_ev, (&g_ev, (&s_id_ev, &perm_ev))) in fxs[l]
.iter()
.zip(gxs[l].iter().zip(s_ids[l].iter().zip(perms[l].iter())))
{
let numerator = f_ev + *beta * s_id_ev + gamma;
let denominator = g_ev + *beta * perm_ev + gamma;
numerator_evals.push(numerator);
denominator_evals.push(denominator);
numerator_evals.push(numerator);
denominator_evals.push(denominator);
}
numerators.push(Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars,
numerator_evals,
)));
denominators.push(Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars,
denominator_evals,
)));
} }
let numerator = Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars,
numerator_evals,
));
let denominator = Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars,
denominator_evals,
));
end_timer!(start); end_timer!(start);
Ok((numerator, denominator))
Ok((numerators, denominators))
} }

Loading…
Cancel
Save