Browse Source

refactor prodcheck

main
Charles Chen 2 years ago
committed by chancharles92
parent
commit
d6674351c1
3 changed files with 253 additions and 202 deletions
  1. +6
    -2
      subroutines/src/poly_iop/perm_check/mod.rs
  2. +137
    -58
      subroutines/src/poly_iop/prod_check/mod.rs
  3. +110
    -142
      subroutines/src/poly_iop/prod_check/util.rs

+ 6
- 2
subroutines/src/poly_iop/perm_check/mod.rs

@ -121,8 +121,12 @@ where
let (numerator, denominator) = computer_num_and_denom(&beta, &gamma, fx, gx, s_perm)?;
// invoke product check on numerator and denominator
let (proof, prod_poly) =
<Self as ProductCheck<E, PCS>>::prove(pcs_param, &numerator, &denominator, transcript)?;
let (proof, prod_poly, _frac_poly) = <Self as ProductCheck<E, PCS>>::prove(
pcs_param,
&[numerator],
&[denominator],
transcript,
)?;
end_timer!(start);
Ok((proof, prod_poly))

+ 137
- 58
subroutines/src/poly_iop/prod_check/mod.rs

@ -4,7 +4,7 @@ use crate::{
pcs::PolynomialCommitmentScheme,
poly_iop::{
errors::PolyIOPErrors,
prod_check::util::{compute_product_poly, prove_zero_check},
prod_check::util::{compute_frac_poly, compute_product_poly, prove_zero_check},
zero_check::ZeroCheck,
PolyIOP,
},
@ -19,22 +19,29 @@ use transcript::IOPTranscript;
mod util;
/// A product-check proves that two n-variate multilinear polynomials `f(x),
/// g(x)` satisfy:
/// \prod_{x \in {0,1}^n} f(x) = \prod_{x \in {0,1}^n} g(x)
/// A product-check proves that two lists of n-variate multilinear polynomials
/// `(f1, f2, ..., fk)` and `(g1, ..., gk)` satisfy:
/// \prod_{x \in {0,1}^n} f1(x) * ... * fk(x) = \prod_{x \in {0,1}^n} g1(x) *
/// ... * gk(x)
///
/// A ProductCheck is derived from ZeroCheck.
///
/// Prover steps:
/// 1. build `prod(x0, ..., x_n)` from f and g,
/// such that `prod(0, x1, ..., xn)` equals `f/g` over domain {0,1}^n
/// 2. push commitments of `prod(x)` to the transcript,
/// and `generate_challenge` from current transcript (generate alpha)
/// 3. generate the zerocheck proof for the virtual polynomial
/// prod(1, x) - prod(x, 0) * prod(x, 1) + alpha * (f(x) - prod(0, x) * g(x))
/// 1. build MLE `frac(x)` s.t. `frac(x) = f1(x) * ... * fk(x) / (g1(x) * ... *
/// gk(x))` for all x \in {0,1}^n 2. build `prod(x)` from `frac(x)`, where
/// `prod(x)` equals to `v(1,x)` in the paper 2. push commitments of `frac(x)`
/// and `prod(x)` to the transcript, and `generate_challenge` from current
/// transcript (generate alpha) 3. generate the zerocheck proof for the virtual
/// polynomial Q(x): prod(x) - p1(x) * p2(x)
/// + alpha * frac(x) * g1(x) * ... * gk(x)
/// - alpha * f1(x) * ... * fk(x)
/// where p1(x) = (1-x1) * frac(x2, ..., xn, 0)
/// + x1 * prod(x2, ..., xn, 0),
/// and p2(x) = (1-x1) * frac(x2, ..., xn, 1)
/// + x1 * prod(x2, ..., xn, 1)
///
/// Verifier steps:
/// 1. Extract commitments of `prod(x)` from the proof, push
/// 1. Extract commitments of `frac(x)` and `prod(x)` from the proof, push
/// them to the transcript
/// 2. `generate_challenge` from current transcript (generate alpha)
/// 3. `verify` to verify the zerocheck proof and generate the subclaim for
@ -55,30 +62,42 @@ where
/// ProductCheck prover/verifier.
fn init_transcript() -> Self::Transcript;
/// Generate a proof for product check, showing that witness multilinear
/// polynomials f(x), g(x) satisfy `\prod_{x \in {0,1}^n} f(x) =
/// \prod_{x \in {0,1}^n} g(x)`
/// Proves that two lists of n-variate multilinear polynomials `(f1, f2,
/// ..., fk)` and `(g1, ..., gk)` satisfy:
/// \prod_{x \in {0,1}^n} f1(x) * ... * fk(x)
/// = \prod_{x \in {0,1}^n} g1(x) * ... * gk(x)
///
/// Inputs:
/// - fx: the numerator multilinear polynomial
/// - gx: the denominator multilinear polynomial
/// - fxs: the list of numerator multilinear polynomial
/// - gxs: the list of denominator multilinear polynomial
/// - transcript: the IOP transcript
/// - pk: PCS committing key
///
/// Outputs
/// - the product check proof
/// - the product polynomial (used for testing)
/// - the fractional polynomial (used for testing)
///
/// Cost: O(N)
#[allow(clippy::type_complexity)]
fn prove(
pcs_param: &PCS::ProverParam,
fx: &Self::MultilinearExtension,
gx: &Self::MultilinearExtension,
fxs: &[Self::MultilinearExtension],
gxs: &[Self::MultilinearExtension],
transcript: &mut IOPTranscript<E::Fr>,
) -> Result<(Self::ProductCheckProof, Self::MultilinearExtension), PolyIOPErrors>;
/// Verify that for witness multilinear polynomials f(x), g(x)
/// it holds that `\prod_{x \in {0,1}^n} f(x) = \prod_{x \in {0,1}^n} g(x)`
) -> Result<
(
Self::ProductCheckProof,
Self::MultilinearExtension,
Self::MultilinearExtension,
),
PolyIOPErrors,
>;
/// Verify that for witness multilinear polynomials (f1, ..., fk, g1, ...,
/// gk) it holds that
/// `\prod_{x \in {0,1}^n} f1(x) * ... * fk(x)
/// = \prod_{x \in {0,1}^n} g1(x) * ... * gk(x)`
fn verify(
proof: &Self::ProductCheckProof,
aux_info: &VPAuxInfo<E::Fr>,
@ -87,9 +106,7 @@ where
}
/// A product check subclaim consists of
/// - A zero check IOP subclaim for
/// `Q(x) = prod(1, x) - prod(x, 0) * prod(x, 1) + alpha * (f(x) - prod(0,
/// x) * g(x)) = 0`
/// - A zero check IOP subclaim for the virtual polynomial
/// - The random challenge `alpha`
/// - A final query for `prod(1, ..., 1, 0) = 1`.
// Note that this final query is in fact a constant that
@ -110,6 +127,7 @@ pub struct ProductCheckSubClaim> {
/// A product check proof consists of
/// - a zerocheck proof
/// - a product polynomial commitment
/// - a polynomial commitment for the fractional polynomial
#[derive(Clone, Debug, Default, PartialEq)]
pub struct ProductCheckProof<
E: PairingEngine,
@ -118,6 +136,7 @@ pub struct ProductCheckProof<
> {
pub zero_check_proof: ZC::ZeroCheckProof,
pub prod_x_comm: PCS::Commitment,
pub frac_comm: PCS::Commitment,
}
impl<E, PCS> ProductCheck<E, PCS> for PolyIOP<E::Fr>
@ -134,28 +153,51 @@ where
fn prove(
pcs_param: &PCS::ProverParam,
fx: &Self::MultilinearExtension,
gx: &Self::MultilinearExtension,
fxs: &[Self::MultilinearExtension],
gxs: &[Self::MultilinearExtension],
transcript: &mut IOPTranscript<E::Fr>,
) -> Result<(Self::ProductCheckProof, Self::MultilinearExtension), PolyIOPErrors> {
) -> Result<
(
Self::ProductCheckProof,
Self::MultilinearExtension,
Self::MultilinearExtension,
),
PolyIOPErrors,
> {
let start = start_timer!(|| "prod_check prove");
if fx.num_vars != gx.num_vars {
if fxs.is_empty() {
return Err(PolyIOPErrors::InvalidParameters("fxs is empty".to_string()));
}
if fxs.len() != gxs.len() {
return Err(PolyIOPErrors::InvalidParameters(
"fx and gx have different number of variables".to_string(),
"fxs and gxs have different number of polynomials".to_string(),
));
}
for poly in fxs.iter().chain(gxs.iter()) {
if poly.num_vars != fxs[0].num_vars {
return Err(PolyIOPErrors::InvalidParameters(
"fx and gx have different number of variables".to_string(),
));
}
}
// compute the fractional polynomial frac_p s.t.
// frac_p(x) = f1(x) * ... * fk(x) / (g1(x) * ... * gk(x))
let frac_poly = compute_frac_poly(fxs, gxs)?;
// compute the product polynomial
let prod_x = compute_product_poly(fx, gx)?;
let prod_x = compute_product_poly(&frac_poly)?;
// generate challenge
let frac_comm = PCS::commit(pcs_param, &frac_poly)?;
let prod_x_comm = PCS::commit(pcs_param, &prod_x)?;
transcript.append_serializable_element(b"frac(x)", &frac_comm)?;
transcript.append_serializable_element(b"prod(x)", &prod_x_comm)?;
let alpha = transcript.get_and_append_challenge(b"alpha")?;
// build the zero-check proof
let (zero_check_proof, _) = prove_zero_check(fx, gx, &prod_x, &alpha, transcript)?;
let (zero_check_proof, _) =
prove_zero_check(fxs, gxs, &frac_poly, &prod_x, &alpha, transcript)?;
end_timer!(start);
@ -163,8 +205,10 @@ where
ProductCheckProof {
zero_check_proof,
prod_x_comm,
frac_comm,
},
prod_x,
frac_poly,
))
}
@ -176,6 +220,7 @@ where
let start = start_timer!(|| "prod_check verify");
// update transcript and generate challenge
transcript.append_serializable_element(b"frac(x)", &proof.frac_comm)?;
transcript.append_serializable_element(b"prod(x)", &proof.prod_x_comm)?;
let alpha = transcript.get_and_append_challenge(b"alpha")?;
@ -184,8 +229,8 @@ where
let zero_check_sub_claim =
<Self as ZeroCheck<E::Fr>>::verify(&proof.zero_check_proof, aux_info, transcript)?;
// the final query is on prod_x, hence has length `num_vars` + 1
let mut final_query = vec![E::Fr::one(); aux_info.num_variables + 1];
// the final query is on prod_x
let mut final_query = vec![E::Fr::one(); aux_info.num_variables];
// the point has to be reversed because Arkworks uses big-endian.
final_query[0] = E::Fr::zero();
let final_eval = E::Fr::one();
@ -214,10 +259,35 @@ mod test {
use ark_std::test_rng;
use std::{marker::PhantomData, rc::Rc};
// f and g are guaranteed to have the same product
fn check_frac_poly<E>(
frac_poly: &Rc<DenseMultilinearExtension<E::Fr>>,
fs: &[Rc<DenseMultilinearExtension<E::Fr>>],
gs: &[Rc<DenseMultilinearExtension<E::Fr>>],
) where
E: PairingEngine,
{
let mut flag = true;
let num_vars = frac_poly.num_vars;
for i in 0..1 << num_vars {
let nom = fs
.iter()
.fold(E::Fr::from(1u8), |acc, f| acc * f.evaluations[i]);
let denom = gs
.iter()
.fold(E::Fr::from(1u8), |acc, g| acc * g.evaluations[i]);
if denom * frac_poly.evaluations[i] != nom {
flag = false;
break;
}
}
assert_eq!(flag, true);
}
// fs and gs are guaranteed to have the same product
// fs and hs doesn't have the same product
fn test_product_check_helper<E, PCS>(
f: &DenseMultilinearExtension<E::Fr>,
g: &DenseMultilinearExtension<E::Fr>,
fs: &[Rc<DenseMultilinearExtension<E::Fr>>],
gs: &[Rc<DenseMultilinearExtension<E::Fr>>],
hs: &[Rc<DenseMultilinearExtension<E::Fr>>],
pcs_param: &PCS::ProverParam,
) -> Result<(), PolyIOPErrors>
where
@ -227,19 +297,16 @@ mod test {
let mut transcript = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::init_transcript();
transcript.append_message(b"testing", b"initializing transcript for testing")?;
let (proof, prod_x) = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::prove(
pcs_param,
&Rc::new(f.clone()),
&Rc::new(g.clone()),
&mut transcript,
)?;
let (proof, prod_x, frac_poly) =
<PolyIOP<E::Fr> as ProductCheck<E, PCS>>::prove(pcs_param, fs, gs, &mut transcript)?;
let mut transcript = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::init_transcript();
transcript.append_message(b"testing", b"initializing transcript for testing")?;
// what's aux_info for?
let aux_info = VPAuxInfo {
max_degree: 2,
num_variables: f.num_vars,
max_degree: fs.len() + 1,
num_variables: fs[0].num_vars,
phantom: PhantomData::default(),
};
let prod_subclaim =
@ -249,18 +316,14 @@ mod test {
prod_subclaim.final_query.1,
"different product"
);
check_frac_poly::<E>(&frac_poly, fs, gs);
// bad path
let mut transcript = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::init_transcript();
transcript.append_message(b"testing", b"initializing transcript for testing")?;
let h = f + g;
let (bad_proof, prod_x_bad) = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::prove(
pcs_param,
&Rc::new(f.clone()),
&Rc::new(h),
&mut transcript,
)?;
let (bad_proof, prod_x_bad, frac_poly) =
<PolyIOP<E::Fr> as ProductCheck<E, PCS>>::prove(pcs_param, fs, hs, &mut transcript)?;
let mut transcript = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::init_transcript();
transcript.append_message(b"testing", b"initializing transcript for testing")?;
@ -274,6 +337,8 @@ mod test {
bad_subclaim.final_query.1,
"can't detect wrong proof"
);
// the frac_poly should still be computed correctly
check_frac_poly::<E>(&frac_poly, fs, hs);
Ok(())
}
@ -281,14 +346,28 @@ mod test {
fn test_product_check(nv: usize) -> Result<(), PolyIOPErrors> {
let mut rng = test_rng();
let f: DenseMultilinearExtension<Fr> = DenseMultilinearExtension::rand(nv, &mut rng);
let mut g = f.clone();
g.evaluations.reverse();
let f1: DenseMultilinearExtension<Fr> = DenseMultilinearExtension::rand(nv, &mut rng);
let mut g1 = f1.clone();
g1.evaluations.reverse();
let f2: DenseMultilinearExtension<Fr> = DenseMultilinearExtension::rand(nv, &mut rng);
let mut g2 = f2.clone();
g2.evaluations.reverse();
let fs = vec![Rc::new(f1), Rc::new(f2)];
let gs = vec![Rc::new(g2), Rc::new(g1)];
let mut hs = vec![];
for _ in 0..fs.len() {
hs.push(Rc::new(DenseMultilinearExtension::rand(
fs[0].num_vars,
&mut rng,
)));
}
let srs = MultilinearKzgPCS::<Bls12_381>::gen_srs_for_testing(&mut rng, nv + 1)?;
let (pcs_param, _) = MultilinearKzgPCS::<Bls12_381>::trim(&srs, None, Some(nv + 1))?;
let srs = MultilinearKzgPCS::<Bls12_381>::gen_srs_for_testing(&mut rng, nv)?;
let (pcs_param, _) = MultilinearKzgPCS::<Bls12_381>::trim(&srs, None, Some(nv))?;
test_product_check_helper::<Bls12_381, MultilinearKzgPCS<Bls12_381>>(&f, &g, &pcs_param)?;
test_product_check_helper::<Bls12_381, MultilinearKzgPCS<Bls12_381>>(
&fs, &gs, &hs, &pcs_param,
)?;
Ok(())
}

+ 110
- 142
subroutines/src/poly_iop/prod_check/util.rs

@ -5,198 +5,166 @@ use arithmetic::{get_index, VirtualPolynomial};
use ark_ff::PrimeField;
use ark_poly::DenseMultilinearExtension;
use ark_std::{end_timer, start_timer};
use rayon::prelude::{IntoParallelRefIterator, ParallelIterator};
use std::rc::Rc;
use transcript::IOPTranscript;
/// Compute the product polynomial `prod(x)` where
/// Compute multilinear fractional polynomial s.t. frac(x) = f1(x) * ... * fk(x)
/// / (g1(x) * ... * gk(x)) for all x \in {0,1}^n
///
/// - `prod(0,x) := prod(0, x1, …, xn)` is the MLE over the
/// evaluations of `f(x)/g(x)` on the boolean hypercube {0,1}^n
///
/// - `prod(1,x)` is a MLE over the evaluations of `prod(x, 0) * prod(x, 1)`
/// on the boolean hypercube {0,1}^n
/// The caller needs to sanity-check that the number of polynomials and
/// variables match in fxs and gxs; and gi(x) has no zero entries.
pub(super) fn compute_frac_poly<F: PrimeField>(
fxs: &[Rc<DenseMultilinearExtension<F>>],
gxs: &[Rc<DenseMultilinearExtension<F>>],
) -> Result<Rc<DenseMultilinearExtension<F>>, PolyIOPErrors> {
let start = start_timer!(|| "compute frac(x)");
let mut f_evals = vec![F::one(); 1 << fxs[0].num_vars];
for fx in fxs.iter() {
for (f_eval, fi) in f_evals.iter_mut().zip(fx.iter()) {
*f_eval *= fi;
}
}
let mut g_evals = vec![F::one(); 1 << gxs[0].num_vars];
for gx in gxs.iter() {
for (g_eval, gi) in g_evals.iter_mut().zip(gx.iter()) {
*g_eval *= gi;
}
}
for (f_eval, g_eval) in f_evals.iter_mut().zip(g_evals.iter()) {
if *g_eval == F::zero() {
return Err(PolyIOPErrors::InvalidParameters(
"gxs has zero entries in the boolean hypercube".to_string(),
));
}
*f_eval /= g_eval;
}
end_timer!(start);
Ok(Rc::new(DenseMultilinearExtension::from_evaluations_vec(
fxs[0].num_vars,
f_evals,
)))
}
/// Compute the product polynomial `prod(x)` such that
/// `prod(x) = [(1-x1)*frac(x2, ..., xn, 0) + x1*prod(x2, ..., xn, 0)] *
/// [(1-x1)*frac(x2, ..., xn, 1) + x1*prod(x2, ..., xn, 1)]` on the boolean
/// hypercube {0,1}^n
///
/// The caller needs to check num_vars matches in f and g
/// Cost: linear in N.
pub(super) fn compute_product_poly<F: PrimeField>(
fx: &Rc<DenseMultilinearExtension<F>>,
gx: &Rc<DenseMultilinearExtension<F>>,
frac_poly: &Rc<DenseMultilinearExtension<F>>,
) -> Result<Rc<DenseMultilinearExtension<F>>, PolyIOPErrors> {
let start = start_timer!(|| "compute evaluations of prod polynomial");
let num_vars = fx.num_vars;
// ===================================
// prod(0, x)
// ===================================
let prod_0x_eval = compute_prod_0(fx, gx)?;
let num_vars = frac_poly.num_vars;
let frac_evals = &frac_poly.evaluations;
// ===================================
// prod(1, x)
// prod(x)
// ===================================
//
// `prod(1, x)` can be computed via recursing the following formula for 2^n-1
// `prod(x)` can be computed via recursing the following formula for 2^n-1
// times
//
// `prod(1, x_1, ..., x_n) :=
// prod(x_1, x_2, ..., x_n, 0) * prod(x_1, x_2, ..., x_n, 1)`
// `prod(x_1, ..., x_n) :=
// [(1-x1)*frac(x2, ..., xn, 0) + x1*prod(x2, ..., xn, 0)] *
// [(1-x1)*frac(x2, ..., xn, 1) + x1*prod(x2, ..., xn, 1)]`
//
// At any given step, the right hand side of the equation
// is available via either eval_0x or the current view of eval_1x
let mut prod_1x_eval = vec![];
// is available via either frac_x or the current view of prod_x
let mut prod_x_evals = vec![];
for x in 0..(1 << num_vars) - 1 {
// sign will decide if the evaluation should be looked up from eval_0x or
// eval_1x; x_zero_index is the index for the evaluation (x_2, ..., x_n,
// sign will decide if the evaluation should be looked up from frac_x or
// prod_x; x_zero_index is the index for the evaluation (x_2, ..., x_n,
// 0); x_one_index is the index for the evaluation (x_2, ..., x_n, 1);
let (x_zero_index, x_one_index, sign) = get_index(x, num_vars);
if !sign {
prod_1x_eval.push(prod_0x_eval[x_zero_index] * prod_0x_eval[x_one_index]);
prod_x_evals.push(frac_evals[x_zero_index] * frac_evals[x_one_index]);
} else {
// sanity check: if we are trying to look up from the eval_1x table,
// sanity check: if we are trying to look up from the prod_x_evals table,
// then the target index must already exist
if x_zero_index >= prod_1x_eval.len() || x_one_index >= prod_1x_eval.len() {
if x_zero_index >= prod_x_evals.len() || x_one_index >= prod_x_evals.len() {
return Err(PolyIOPErrors::ShouldNotArrive);
}
prod_1x_eval.push(prod_1x_eval[x_zero_index] * prod_1x_eval[x_one_index]);
prod_x_evals.push(prod_x_evals[x_zero_index] * prod_x_evals[x_one_index]);
}
}
// prod(1, 1, ..., 1) := 0
prod_1x_eval.push(F::zero());
// ===================================
// prod(x)
// ===================================
// prod(x)'s evaluation is indeed `e := [eval_0x[..], eval_1x[..]].concat()`
let eval = [prod_0x_eval.as_slice(), prod_1x_eval.as_slice()].concat();
let prod_x = Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars + 1,
eval,
));
prod_x_evals.push(F::zero());
end_timer!(start);
Ok(prod_x)
Ok(Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars,
prod_x_evals,
)))
}
/// generate the zerocheck proof for the virtual polynomial
/// prod(1, x) - prod(x, 0) * prod(x, 1) + alpha * (f(x) - prod(0, x) * g(x))
///
/// Returns proof and Q(x) for testing purpose.
/// prod(x) - p1(x) * p2(x) + alpha * [frac(x) * g1(x) * ... * gk(x) - f1(x)
/// * ... * fk(x)] where p1(x) = (1-x1) * frac(x2, ..., xn, 0) + x1 * prod(x2,
/// ..., xn, 0), p2(x) = (1-x1) * frac(x2, ..., xn, 1) + x1 * prod(x2, ...,
/// xn, 1)
/// Returns proof.
///
/// Cost: O(N)
pub(super) fn prove_zero_check<F: PrimeField>(
fx: &Rc<DenseMultilinearExtension<F>>,
gx: &Rc<DenseMultilinearExtension<F>>,
fxs: &[Rc<DenseMultilinearExtension<F>>],
gxs: &[Rc<DenseMultilinearExtension<F>>],
frac_poly: &Rc<DenseMultilinearExtension<F>>,
prod_x: &Rc<DenseMultilinearExtension<F>>,
alpha: &F,
transcript: &mut IOPTranscript<F>,
) -> Result<(IOPProof<F>, VirtualPolynomial<F>), PolyIOPErrors> {
let start = start_timer!(|| "zerocheck in product check");
let prod_partial_evals = build_prod_partial_eval(prod_x)?;
let prod_0x = prod_partial_evals[0].clone();
let prod_1x = prod_partial_evals[1].clone();
let prod_x0 = prod_partial_evals[2].clone();
let prod_x1 = prod_partial_evals[3].clone();
// compute g(x) * prod(0, x) * alpha
let mut q_x = VirtualPolynomial::new_from_mle(gx, F::one());
q_x.mul_by_mle(prod_0x, *alpha)?;
// g(x) * prod(0, x) * alpha
// - f(x) * alpha
q_x.add_mle_list([fx.clone()], -*alpha)?;
// Q(x) := prod(1,x) - prod(x, 0) * prod(x, 1)
// + alpha * (
// g(x) * prod(0, x)
// - f(x))
q_x.add_mle_list([prod_x0, prod_x1], -F::one())?;
q_x.add_mle_list([prod_1x], F::one())?;
let iop_proof = <PolyIOP<F> as ZeroCheck<F>>::prove(&q_x, transcript)?;
end_timer!(start);
Ok((iop_proof, q_x))
}
/// Helper function of the IOP.
///
/// Input:
/// - prod(x)
///
/// Output: the following 4 polynomials
/// - prod(0, x)
/// - prod(1, x)
/// - prod(x, 0)
/// - prod(x, 1)
fn build_prod_partial_eval<F: PrimeField>(
prod_x: &Rc<DenseMultilinearExtension<F>>,
) -> Result<[Rc<DenseMultilinearExtension<F>>; 4], PolyIOPErrors> {
let start = start_timer!(|| "build partial prod polynomial");
let prod_x_eval = &prod_x.evaluations;
let num_vars = prod_x.num_vars - 1;
// prod(0, x)
let prod_0_x = Rc::new(DenseMultilinearExtension::from_evaluations_slice(
num_vars,
&prod_x_eval[0..1 << num_vars],
));
// prod(1, x)
let prod_1_x = Rc::new(DenseMultilinearExtension::from_evaluations_slice(
num_vars,
&prod_x_eval[1 << num_vars..1 << (num_vars + 1)],
));
// ===================================
// prod(x, 0) and prod(x, 1)
// ===================================
//
// now we compute eval_x0 and eval_x1
// eval_0x will be the odd coefficients of eval
// and eval_1x will be the even coefficients of eval
let mut eval_x0 = vec![];
let mut eval_x1 = vec![];
for (x, &prod_x) in prod_x_eval.iter().enumerate() {
if x & 1 == 0 {
eval_x0.push(prod_x);
let num_vars = frac_poly.num_vars;
// compute p1(x) = (1-x1) * frac(x2, ..., xn, 0) + x1 * prod(x2, ..., xn, 0)
// compute p2(x) = (1-x1) * frac(x2, ..., xn, 1) + x1 * prod(x2, ..., xn, 1)
let mut p1_evals = vec![F::zero(); 1 << num_vars];
let mut p2_evals = vec![F::zero(); 1 << num_vars];
for x in 0..1 << num_vars {
let (x0, x1, sign) = get_index(x, num_vars);
if !sign {
p1_evals[x] = frac_poly.evaluations[x0];
p2_evals[x] = frac_poly.evaluations[x1];
} else {
eval_x1.push(prod_x);
p1_evals[x] = prod_x.evaluations[x0];
p2_evals[x] = prod_x.evaluations[x1];
}
}
let prod_x_0 = Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars, eval_x0,
let p1 = Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars, p1_evals,
));
let prod_x_1 = Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars, eval_x1,
let p2 = Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars, p2_evals,
));
end_timer!(start);
// compute Q(x)
// prod(x)
let mut q_x = VirtualPolynomial::new_from_mle(prod_x, F::one());
Ok([prod_0_x, prod_1_x, prod_x_0, prod_x_1])
}
// prod(x)
// - p1(x) * p2(x)
q_x.add_mle_list([p1, p2], -F::one())?;
/// Returns the evaluations of
/// - `prod(0,x) := prod(0, x1, …, xn)` which is the MLE over the
/// evaluations of f(x)/g(x) on the boolean hypercube {0,1}^n:
///
/// The caller needs to check num_vars matches in f/g
/// Cost: linear in N.
fn compute_prod_0<F: PrimeField>(
fx: &DenseMultilinearExtension<F>,
gx: &DenseMultilinearExtension<F>,
) -> Result<Vec<F>, PolyIOPErrors> {
let start = start_timer!(|| "compute prod(0,x)");
let input = fx
.iter()
.zip(gx.iter())
.map(|(&fi, &gi)| (fi, gi))
.collect::<Vec<_>>();
let prod_0x_evals = input.par_iter().map(|(x, y)| *x / *y).collect::<Vec<_>>();
// prod(x)
// - p1(x) * p2(x)
// + alpha * frac(x) * g1(x) * ... * gk(x)
let mut mle_list = gxs.to_vec();
mle_list.push(frac_poly.clone());
q_x.add_mle_list(mle_list, *alpha)?;
// prod(x)
// - p1(x) * p2(x)
// + alpha * frac(x) * g1(x) * ... * gk(x)
// - alpha * f1(x) * ... * fk(x)]
q_x.add_mle_list(fxs.to_vec(), -*alpha)?;
let iop_proof = <PolyIOP<F> as ZeroCheck<F>>::prove(&q_x, transcript)?;
end_timer!(start);
Ok(prod_0x_evals)
Ok((iop_proof, q_x))
}

Loading…
Cancel
Save