|
@ -4,7 +4,7 @@ use crate::{ |
|
|
pcs::PolynomialCommitmentScheme,
|
|
|
pcs::PolynomialCommitmentScheme,
|
|
|
poly_iop::{
|
|
|
poly_iop::{
|
|
|
errors::PolyIOPErrors,
|
|
|
errors::PolyIOPErrors,
|
|
|
prod_check::util::{compute_product_poly, prove_zero_check},
|
|
|
|
|
|
|
|
|
prod_check::util::{compute_frac_poly, compute_product_poly, prove_zero_check},
|
|
|
zero_check::ZeroCheck,
|
|
|
zero_check::ZeroCheck,
|
|
|
PolyIOP,
|
|
|
PolyIOP,
|
|
|
},
|
|
|
},
|
|
@ -19,22 +19,29 @@ use transcript::IOPTranscript; |
|
|
|
|
|
|
|
|
mod util;
|
|
|
mod util;
|
|
|
|
|
|
|
|
|
/// A product-check proves that two n-variate multilinear polynomials `f(x),
|
|
|
|
|
|
/// g(x)` satisfy:
|
|
|
|
|
|
/// \prod_{x \in {0,1}^n} f(x) = \prod_{x \in {0,1}^n} g(x)
|
|
|
|
|
|
|
|
|
/// A product-check proves that two lists of n-variate multilinear polynomials
|
|
|
|
|
|
/// `(f1, f2, ..., fk)` and `(g1, ..., gk)` satisfy:
|
|
|
|
|
|
/// \prod_{x \in {0,1}^n} f1(x) * ... * fk(x) = \prod_{x \in {0,1}^n} g1(x) *
|
|
|
|
|
|
/// ... * gk(x)
|
|
|
///
|
|
|
///
|
|
|
/// A ProductCheck is derived from ZeroCheck.
|
|
|
/// A ProductCheck is derived from ZeroCheck.
|
|
|
///
|
|
|
///
|
|
|
/// Prover steps:
|
|
|
/// Prover steps:
|
|
|
/// 1. build `prod(x0, ..., x_n)` from f and g,
|
|
|
|
|
|
/// such that `prod(0, x1, ..., xn)` equals `f/g` over domain {0,1}^n
|
|
|
|
|
|
/// 2. push commitments of `prod(x)` to the transcript,
|
|
|
|
|
|
/// and `generate_challenge` from current transcript (generate alpha)
|
|
|
|
|
|
/// 3. generate the zerocheck proof for the virtual polynomial
|
|
|
|
|
|
/// prod(1, x) - prod(x, 0) * prod(x, 1) + alpha * (f(x) - prod(0, x) * g(x))
|
|
|
|
|
|
|
|
|
/// 1. build MLE `frac(x)` s.t. `frac(x) = f1(x) * ... * fk(x) / (g1(x) * ... *
|
|
|
|
|
|
/// gk(x))` for all x \in {0,1}^n 2. build `prod(x)` from `frac(x)`, where
|
|
|
|
|
|
/// `prod(x)` equals to `v(1,x)` in the paper 2. push commitments of `frac(x)`
|
|
|
|
|
|
/// and `prod(x)` to the transcript, and `generate_challenge` from current
|
|
|
|
|
|
/// transcript (generate alpha) 3. generate the zerocheck proof for the virtual
|
|
|
|
|
|
/// polynomial Q(x): prod(x) - p1(x) * p2(x)
|
|
|
|
|
|
/// + alpha * frac(x) * g1(x) * ... * gk(x)
|
|
|
|
|
|
/// - alpha * f1(x) * ... * fk(x)
|
|
|
|
|
|
/// where p1(x) = (1-x1) * frac(x2, ..., xn, 0)
|
|
|
|
|
|
/// + x1 * prod(x2, ..., xn, 0),
|
|
|
|
|
|
/// and p2(x) = (1-x1) * frac(x2, ..., xn, 1)
|
|
|
|
|
|
/// + x1 * prod(x2, ..., xn, 1)
|
|
|
///
|
|
|
///
|
|
|
/// Verifier steps:
|
|
|
/// Verifier steps:
|
|
|
/// 1. Extract commitments of `prod(x)` from the proof, push
|
|
|
|
|
|
|
|
|
/// 1. Extract commitments of `frac(x)` and `prod(x)` from the proof, push
|
|
|
/// them to the transcript
|
|
|
/// them to the transcript
|
|
|
/// 2. `generate_challenge` from current transcript (generate alpha)
|
|
|
/// 2. `generate_challenge` from current transcript (generate alpha)
|
|
|
/// 3. `verify` to verify the zerocheck proof and generate the subclaim for
|
|
|
/// 3. `verify` to verify the zerocheck proof and generate the subclaim for
|
|
@ -55,30 +62,42 @@ where |
|
|
/// ProductCheck prover/verifier.
|
|
|
/// ProductCheck prover/verifier.
|
|
|
fn init_transcript() -> Self::Transcript;
|
|
|
fn init_transcript() -> Self::Transcript;
|
|
|
|
|
|
|
|
|
/// Generate a proof for product check, showing that witness multilinear
|
|
|
|
|
|
/// polynomials f(x), g(x) satisfy `\prod_{x \in {0,1}^n} f(x) =
|
|
|
|
|
|
/// \prod_{x \in {0,1}^n} g(x)`
|
|
|
|
|
|
|
|
|
/// Proves that two lists of n-variate multilinear polynomials `(f1, f2,
|
|
|
|
|
|
/// ..., fk)` and `(g1, ..., gk)` satisfy:
|
|
|
|
|
|
/// \prod_{x \in {0,1}^n} f1(x) * ... * fk(x)
|
|
|
|
|
|
/// = \prod_{x \in {0,1}^n} g1(x) * ... * gk(x)
|
|
|
///
|
|
|
///
|
|
|
/// Inputs:
|
|
|
/// Inputs:
|
|
|
/// - fx: the numerator multilinear polynomial
|
|
|
|
|
|
/// - gx: the denominator multilinear polynomial
|
|
|
|
|
|
|
|
|
/// - fxs: the list of numerator multilinear polynomial
|
|
|
|
|
|
/// - gxs: the list of denominator multilinear polynomial
|
|
|
/// - transcript: the IOP transcript
|
|
|
/// - transcript: the IOP transcript
|
|
|
/// - pk: PCS committing key
|
|
|
/// - pk: PCS committing key
|
|
|
///
|
|
|
///
|
|
|
/// Outputs
|
|
|
/// Outputs
|
|
|
/// - the product check proof
|
|
|
/// - the product check proof
|
|
|
/// - the product polynomial (used for testing)
|
|
|
/// - the product polynomial (used for testing)
|
|
|
|
|
|
/// - the fractional polynomial (used for testing)
|
|
|
///
|
|
|
///
|
|
|
/// Cost: O(N)
|
|
|
/// Cost: O(N)
|
|
|
|
|
|
#[allow(clippy::type_complexity)]
|
|
|
fn prove(
|
|
|
fn prove(
|
|
|
pcs_param: &PCS::ProverParam,
|
|
|
pcs_param: &PCS::ProverParam,
|
|
|
fx: &Self::MultilinearExtension,
|
|
|
|
|
|
gx: &Self::MultilinearExtension,
|
|
|
|
|
|
|
|
|
fxs: &[Self::MultilinearExtension],
|
|
|
|
|
|
gxs: &[Self::MultilinearExtension],
|
|
|
transcript: &mut IOPTranscript<E::Fr>,
|
|
|
transcript: &mut IOPTranscript<E::Fr>,
|
|
|
) -> Result<(Self::ProductCheckProof, Self::MultilinearExtension), PolyIOPErrors>;
|
|
|
|
|
|
|
|
|
|
|
|
/// Verify that for witness multilinear polynomials f(x), g(x)
|
|
|
|
|
|
/// it holds that `\prod_{x \in {0,1}^n} f(x) = \prod_{x \in {0,1}^n} g(x)`
|
|
|
|
|
|
|
|
|
) -> Result<
|
|
|
|
|
|
(
|
|
|
|
|
|
Self::ProductCheckProof,
|
|
|
|
|
|
Self::MultilinearExtension,
|
|
|
|
|
|
Self::MultilinearExtension,
|
|
|
|
|
|
),
|
|
|
|
|
|
PolyIOPErrors,
|
|
|
|
|
|
>;
|
|
|
|
|
|
|
|
|
|
|
|
/// Verify that for witness multilinear polynomials (f1, ..., fk, g1, ...,
|
|
|
|
|
|
/// gk) it holds that
|
|
|
|
|
|
/// `\prod_{x \in {0,1}^n} f1(x) * ... * fk(x)
|
|
|
|
|
|
/// = \prod_{x \in {0,1}^n} g1(x) * ... * gk(x)`
|
|
|
fn verify(
|
|
|
fn verify(
|
|
|
proof: &Self::ProductCheckProof,
|
|
|
proof: &Self::ProductCheckProof,
|
|
|
aux_info: &VPAuxInfo<E::Fr>,
|
|
|
aux_info: &VPAuxInfo<E::Fr>,
|
|
@ -87,9 +106,7 @@ where |
|
|
}
|
|
|
}
|
|
|
|
|
|
|
|
|
/// A product check subclaim consists of
|
|
|
/// A product check subclaim consists of
|
|
|
/// - A zero check IOP subclaim for
|
|
|
|
|
|
/// `Q(x) = prod(1, x) - prod(x, 0) * prod(x, 1) + alpha * (f(x) - prod(0,
|
|
|
|
|
|
/// x) * g(x)) = 0`
|
|
|
|
|
|
|
|
|
/// - A zero check IOP subclaim for the virtual polynomial
|
|
|
/// - The random challenge `alpha`
|
|
|
/// - The random challenge `alpha`
|
|
|
/// - A final query for `prod(1, ..., 1, 0) = 1`.
|
|
|
/// - A final query for `prod(1, ..., 1, 0) = 1`.
|
|
|
// Note that this final query is in fact a constant that
|
|
|
// Note that this final query is in fact a constant that
|
|
@ -110,6 +127,7 @@ pub struct ProductCheckSubClaim> { |
|
|
/// A product check proof consists of
|
|
|
/// A product check proof consists of
|
|
|
/// - a zerocheck proof
|
|
|
/// - a zerocheck proof
|
|
|
/// - a product polynomial commitment
|
|
|
/// - a product polynomial commitment
|
|
|
|
|
|
/// - a polynomial commitment for the fractional polynomial
|
|
|
#[derive(Clone, Debug, Default, PartialEq)]
|
|
|
#[derive(Clone, Debug, Default, PartialEq)]
|
|
|
pub struct ProductCheckProof<
|
|
|
pub struct ProductCheckProof<
|
|
|
E: PairingEngine,
|
|
|
E: PairingEngine,
|
|
@ -118,6 +136,7 @@ pub struct ProductCheckProof< |
|
|
> {
|
|
|
> {
|
|
|
pub zero_check_proof: ZC::ZeroCheckProof,
|
|
|
pub zero_check_proof: ZC::ZeroCheckProof,
|
|
|
pub prod_x_comm: PCS::Commitment,
|
|
|
pub prod_x_comm: PCS::Commitment,
|
|
|
|
|
|
pub frac_comm: PCS::Commitment,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
|
|
|
impl<E, PCS> ProductCheck<E, PCS> for PolyIOP<E::Fr>
|
|
|
impl<E, PCS> ProductCheck<E, PCS> for PolyIOP<E::Fr>
|
|
@ -134,28 +153,51 @@ where |
|
|
|
|
|
|
|
|
fn prove(
|
|
|
fn prove(
|
|
|
pcs_param: &PCS::ProverParam,
|
|
|
pcs_param: &PCS::ProverParam,
|
|
|
fx: &Self::MultilinearExtension,
|
|
|
|
|
|
gx: &Self::MultilinearExtension,
|
|
|
|
|
|
|
|
|
fxs: &[Self::MultilinearExtension],
|
|
|
|
|
|
gxs: &[Self::MultilinearExtension],
|
|
|
transcript: &mut IOPTranscript<E::Fr>,
|
|
|
transcript: &mut IOPTranscript<E::Fr>,
|
|
|
) -> Result<(Self::ProductCheckProof, Self::MultilinearExtension), PolyIOPErrors> {
|
|
|
|
|
|
|
|
|
) -> Result<
|
|
|
|
|
|
(
|
|
|
|
|
|
Self::ProductCheckProof,
|
|
|
|
|
|
Self::MultilinearExtension,
|
|
|
|
|
|
Self::MultilinearExtension,
|
|
|
|
|
|
),
|
|
|
|
|
|
PolyIOPErrors,
|
|
|
|
|
|
> {
|
|
|
let start = start_timer!(|| "prod_check prove");
|
|
|
let start = start_timer!(|| "prod_check prove");
|
|
|
|
|
|
|
|
|
if fx.num_vars != gx.num_vars {
|
|
|
|
|
|
|
|
|
if fxs.is_empty() {
|
|
|
|
|
|
return Err(PolyIOPErrors::InvalidParameters("fxs is empty".to_string()));
|
|
|
|
|
|
}
|
|
|
|
|
|
if fxs.len() != gxs.len() {
|
|
|
return Err(PolyIOPErrors::InvalidParameters(
|
|
|
return Err(PolyIOPErrors::InvalidParameters(
|
|
|
"fx and gx have different number of variables".to_string(),
|
|
|
|
|
|
|
|
|
"fxs and gxs have different number of polynomials".to_string(),
|
|
|
));
|
|
|
));
|
|
|
}
|
|
|
}
|
|
|
|
|
|
for poly in fxs.iter().chain(gxs.iter()) {
|
|
|
|
|
|
if poly.num_vars != fxs[0].num_vars {
|
|
|
|
|
|
return Err(PolyIOPErrors::InvalidParameters(
|
|
|
|
|
|
"fx and gx have different number of variables".to_string(),
|
|
|
|
|
|
));
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// compute the fractional polynomial frac_p s.t.
|
|
|
|
|
|
// frac_p(x) = f1(x) * ... * fk(x) / (g1(x) * ... * gk(x))
|
|
|
|
|
|
let frac_poly = compute_frac_poly(fxs, gxs)?;
|
|
|
// compute the product polynomial
|
|
|
// compute the product polynomial
|
|
|
let prod_x = compute_product_poly(fx, gx)?;
|
|
|
|
|
|
|
|
|
let prod_x = compute_product_poly(&frac_poly)?;
|
|
|
|
|
|
|
|
|
// generate challenge
|
|
|
// generate challenge
|
|
|
|
|
|
let frac_comm = PCS::commit(pcs_param, &frac_poly)?;
|
|
|
let prod_x_comm = PCS::commit(pcs_param, &prod_x)?;
|
|
|
let prod_x_comm = PCS::commit(pcs_param, &prod_x)?;
|
|
|
|
|
|
transcript.append_serializable_element(b"frac(x)", &frac_comm)?;
|
|
|
transcript.append_serializable_element(b"prod(x)", &prod_x_comm)?;
|
|
|
transcript.append_serializable_element(b"prod(x)", &prod_x_comm)?;
|
|
|
let alpha = transcript.get_and_append_challenge(b"alpha")?;
|
|
|
let alpha = transcript.get_and_append_challenge(b"alpha")?;
|
|
|
|
|
|
|
|
|
// build the zero-check proof
|
|
|
// build the zero-check proof
|
|
|
let (zero_check_proof, _) = prove_zero_check(fx, gx, &prod_x, &alpha, transcript)?;
|
|
|
|
|
|
|
|
|
let (zero_check_proof, _) =
|
|
|
|
|
|
prove_zero_check(fxs, gxs, &frac_poly, &prod_x, &alpha, transcript)?;
|
|
|
|
|
|
|
|
|
end_timer!(start);
|
|
|
end_timer!(start);
|
|
|
|
|
|
|
|
@ -163,8 +205,10 @@ where |
|
|
ProductCheckProof {
|
|
|
ProductCheckProof {
|
|
|
zero_check_proof,
|
|
|
zero_check_proof,
|
|
|
prod_x_comm,
|
|
|
prod_x_comm,
|
|
|
|
|
|
frac_comm,
|
|
|
},
|
|
|
},
|
|
|
prod_x,
|
|
|
prod_x,
|
|
|
|
|
|
frac_poly,
|
|
|
))
|
|
|
))
|
|
|
}
|
|
|
}
|
|
|
|
|
|
|
|
@ -176,6 +220,7 @@ where |
|
|
let start = start_timer!(|| "prod_check verify");
|
|
|
let start = start_timer!(|| "prod_check verify");
|
|
|
|
|
|
|
|
|
// update transcript and generate challenge
|
|
|
// update transcript and generate challenge
|
|
|
|
|
|
transcript.append_serializable_element(b"frac(x)", &proof.frac_comm)?;
|
|
|
transcript.append_serializable_element(b"prod(x)", &proof.prod_x_comm)?;
|
|
|
transcript.append_serializable_element(b"prod(x)", &proof.prod_x_comm)?;
|
|
|
let alpha = transcript.get_and_append_challenge(b"alpha")?;
|
|
|
let alpha = transcript.get_and_append_challenge(b"alpha")?;
|
|
|
|
|
|
|
|
@ -184,8 +229,8 @@ where |
|
|
let zero_check_sub_claim =
|
|
|
let zero_check_sub_claim =
|
|
|
<Self as ZeroCheck<E::Fr>>::verify(&proof.zero_check_proof, aux_info, transcript)?;
|
|
|
<Self as ZeroCheck<E::Fr>>::verify(&proof.zero_check_proof, aux_info, transcript)?;
|
|
|
|
|
|
|
|
|
// the final query is on prod_x, hence has length `num_vars` + 1
|
|
|
|
|
|
let mut final_query = vec![E::Fr::one(); aux_info.num_variables + 1];
|
|
|
|
|
|
|
|
|
// the final query is on prod_x
|
|
|
|
|
|
let mut final_query = vec![E::Fr::one(); aux_info.num_variables];
|
|
|
// the point has to be reversed because Arkworks uses big-endian.
|
|
|
// the point has to be reversed because Arkworks uses big-endian.
|
|
|
final_query[0] = E::Fr::zero();
|
|
|
final_query[0] = E::Fr::zero();
|
|
|
let final_eval = E::Fr::one();
|
|
|
let final_eval = E::Fr::one();
|
|
@ -214,10 +259,35 @@ mod test { |
|
|
use ark_std::test_rng;
|
|
|
use ark_std::test_rng;
|
|
|
use std::{marker::PhantomData, rc::Rc};
|
|
|
use std::{marker::PhantomData, rc::Rc};
|
|
|
|
|
|
|
|
|
// f and g are guaranteed to have the same product
|
|
|
|
|
|
|
|
|
fn check_frac_poly<E>(
|
|
|
|
|
|
frac_poly: &Rc<DenseMultilinearExtension<E::Fr>>,
|
|
|
|
|
|
fs: &[Rc<DenseMultilinearExtension<E::Fr>>],
|
|
|
|
|
|
gs: &[Rc<DenseMultilinearExtension<E::Fr>>],
|
|
|
|
|
|
) where
|
|
|
|
|
|
E: PairingEngine,
|
|
|
|
|
|
{
|
|
|
|
|
|
let mut flag = true;
|
|
|
|
|
|
let num_vars = frac_poly.num_vars;
|
|
|
|
|
|
for i in 0..1 << num_vars {
|
|
|
|
|
|
let nom = fs
|
|
|
|
|
|
.iter()
|
|
|
|
|
|
.fold(E::Fr::from(1u8), |acc, f| acc * f.evaluations[i]);
|
|
|
|
|
|
let denom = gs
|
|
|
|
|
|
.iter()
|
|
|
|
|
|
.fold(E::Fr::from(1u8), |acc, g| acc * g.evaluations[i]);
|
|
|
|
|
|
if denom * frac_poly.evaluations[i] != nom {
|
|
|
|
|
|
flag = false;
|
|
|
|
|
|
break;
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
assert_eq!(flag, true);
|
|
|
|
|
|
}
|
|
|
|
|
|
// fs and gs are guaranteed to have the same product
|
|
|
|
|
|
// fs and hs doesn't have the same product
|
|
|
fn test_product_check_helper<E, PCS>(
|
|
|
fn test_product_check_helper<E, PCS>(
|
|
|
f: &DenseMultilinearExtension<E::Fr>,
|
|
|
|
|
|
g: &DenseMultilinearExtension<E::Fr>,
|
|
|
|
|
|
|
|
|
fs: &[Rc<DenseMultilinearExtension<E::Fr>>],
|
|
|
|
|
|
gs: &[Rc<DenseMultilinearExtension<E::Fr>>],
|
|
|
|
|
|
hs: &[Rc<DenseMultilinearExtension<E::Fr>>],
|
|
|
pcs_param: &PCS::ProverParam,
|
|
|
pcs_param: &PCS::ProverParam,
|
|
|
) -> Result<(), PolyIOPErrors>
|
|
|
) -> Result<(), PolyIOPErrors>
|
|
|
where
|
|
|
where
|
|
@ -227,19 +297,16 @@ mod test { |
|
|
let mut transcript = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::init_transcript();
|
|
|
let mut transcript = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::init_transcript();
|
|
|
transcript.append_message(b"testing", b"initializing transcript for testing")?;
|
|
|
transcript.append_message(b"testing", b"initializing transcript for testing")?;
|
|
|
|
|
|
|
|
|
let (proof, prod_x) = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::prove(
|
|
|
|
|
|
pcs_param,
|
|
|
|
|
|
&Rc::new(f.clone()),
|
|
|
|
|
|
&Rc::new(g.clone()),
|
|
|
|
|
|
&mut transcript,
|
|
|
|
|
|
)?;
|
|
|
|
|
|
|
|
|
let (proof, prod_x, frac_poly) =
|
|
|
|
|
|
<PolyIOP<E::Fr> as ProductCheck<E, PCS>>::prove(pcs_param, fs, gs, &mut transcript)?;
|
|
|
|
|
|
|
|
|
let mut transcript = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::init_transcript();
|
|
|
let mut transcript = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::init_transcript();
|
|
|
transcript.append_message(b"testing", b"initializing transcript for testing")?;
|
|
|
transcript.append_message(b"testing", b"initializing transcript for testing")?;
|
|
|
|
|
|
|
|
|
|
|
|
// what's aux_info for?
|
|
|
let aux_info = VPAuxInfo {
|
|
|
let aux_info = VPAuxInfo {
|
|
|
max_degree: 2,
|
|
|
|
|
|
num_variables: f.num_vars,
|
|
|
|
|
|
|
|
|
max_degree: fs.len() + 1,
|
|
|
|
|
|
num_variables: fs[0].num_vars,
|
|
|
phantom: PhantomData::default(),
|
|
|
phantom: PhantomData::default(),
|
|
|
};
|
|
|
};
|
|
|
let prod_subclaim =
|
|
|
let prod_subclaim =
|
|
@ -249,18 +316,14 @@ mod test { |
|
|
prod_subclaim.final_query.1,
|
|
|
prod_subclaim.final_query.1,
|
|
|
"different product"
|
|
|
"different product"
|
|
|
);
|
|
|
);
|
|
|
|
|
|
check_frac_poly::<E>(&frac_poly, fs, gs);
|
|
|
|
|
|
|
|
|
// bad path
|
|
|
// bad path
|
|
|
let mut transcript = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::init_transcript();
|
|
|
let mut transcript = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::init_transcript();
|
|
|
transcript.append_message(b"testing", b"initializing transcript for testing")?;
|
|
|
transcript.append_message(b"testing", b"initializing transcript for testing")?;
|
|
|
|
|
|
|
|
|
let h = f + g;
|
|
|
|
|
|
let (bad_proof, prod_x_bad) = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::prove(
|
|
|
|
|
|
pcs_param,
|
|
|
|
|
|
&Rc::new(f.clone()),
|
|
|
|
|
|
&Rc::new(h),
|
|
|
|
|
|
&mut transcript,
|
|
|
|
|
|
)?;
|
|
|
|
|
|
|
|
|
let (bad_proof, prod_x_bad, frac_poly) =
|
|
|
|
|
|
<PolyIOP<E::Fr> as ProductCheck<E, PCS>>::prove(pcs_param, fs, hs, &mut transcript)?;
|
|
|
|
|
|
|
|
|
let mut transcript = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::init_transcript();
|
|
|
let mut transcript = <PolyIOP<E::Fr> as ProductCheck<E, PCS>>::init_transcript();
|
|
|
transcript.append_message(b"testing", b"initializing transcript for testing")?;
|
|
|
transcript.append_message(b"testing", b"initializing transcript for testing")?;
|
|
@ -274,6 +337,8 @@ mod test { |
|
|
bad_subclaim.final_query.1,
|
|
|
bad_subclaim.final_query.1,
|
|
|
"can't detect wrong proof"
|
|
|
"can't detect wrong proof"
|
|
|
);
|
|
|
);
|
|
|
|
|
|
// the frac_poly should still be computed correctly
|
|
|
|
|
|
check_frac_poly::<E>(&frac_poly, fs, hs);
|
|
|
|
|
|
|
|
|
Ok(())
|
|
|
Ok(())
|
|
|
}
|
|
|
}
|
|
@ -281,14 +346,28 @@ mod test { |
|
|
fn test_product_check(nv: usize) -> Result<(), PolyIOPErrors> {
|
|
|
fn test_product_check(nv: usize) -> Result<(), PolyIOPErrors> {
|
|
|
let mut rng = test_rng();
|
|
|
let mut rng = test_rng();
|
|
|
|
|
|
|
|
|
let f: DenseMultilinearExtension<Fr> = DenseMultilinearExtension::rand(nv, &mut rng);
|
|
|
|
|
|
let mut g = f.clone();
|
|
|
|
|
|
g.evaluations.reverse();
|
|
|
|
|
|
|
|
|
let f1: DenseMultilinearExtension<Fr> = DenseMultilinearExtension::rand(nv, &mut rng);
|
|
|
|
|
|
let mut g1 = f1.clone();
|
|
|
|
|
|
g1.evaluations.reverse();
|
|
|
|
|
|
let f2: DenseMultilinearExtension<Fr> = DenseMultilinearExtension::rand(nv, &mut rng);
|
|
|
|
|
|
let mut g2 = f2.clone();
|
|
|
|
|
|
g2.evaluations.reverse();
|
|
|
|
|
|
let fs = vec![Rc::new(f1), Rc::new(f2)];
|
|
|
|
|
|
let gs = vec![Rc::new(g2), Rc::new(g1)];
|
|
|
|
|
|
let mut hs = vec![];
|
|
|
|
|
|
for _ in 0..fs.len() {
|
|
|
|
|
|
hs.push(Rc::new(DenseMultilinearExtension::rand(
|
|
|
|
|
|
fs[0].num_vars,
|
|
|
|
|
|
&mut rng,
|
|
|
|
|
|
)));
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
let srs = MultilinearKzgPCS::<Bls12_381>::gen_srs_for_testing(&mut rng, nv + 1)?;
|
|
|
|
|
|
let (pcs_param, _) = MultilinearKzgPCS::<Bls12_381>::trim(&srs, None, Some(nv + 1))?;
|
|
|
|
|
|
|
|
|
let srs = MultilinearKzgPCS::<Bls12_381>::gen_srs_for_testing(&mut rng, nv)?;
|
|
|
|
|
|
let (pcs_param, _) = MultilinearKzgPCS::<Bls12_381>::trim(&srs, None, Some(nv))?;
|
|
|
|
|
|
|
|
|
test_product_check_helper::<Bls12_381, MultilinearKzgPCS<Bls12_381>>(&f, &g, &pcs_param)?;
|
|
|
|
|
|
|
|
|
test_product_check_helper::<Bls12_381, MultilinearKzgPCS<Bls12_381>>(
|
|
|
|
|
|
&fs, &gs, &hs, &pcs_param,
|
|
|
|
|
|
)?;
|
|
|
|
|
|
|
|
|
Ok(())
|
|
|
Ok(())
|
|
|
}
|
|
|
}
|
|
|