mirror of
https://github.com/arnaucube/ipa-rs.git
synced 2026-01-12 08:51:31 +01:00
Add binary counting structure s computation
- Add binary counting structure s computation & more - Add errors handling - Add test of the homomorphic property of the vector commitment
This commit is contained in:
207
src/lib.rs
207
src/lib.rs
@@ -1,8 +1,8 @@
|
||||
extern crate ark_ed_on_bn254;
|
||||
use ark_ec::ProjectiveCurve;
|
||||
use ark_ed_on_bn254::{EdwardsProjective, Fr};
|
||||
use ark_ff::{fields::PrimeField, Field}; // BigInteger
|
||||
use ark_std::{UniformRand, Zero};
|
||||
use ark_ff::{fields::PrimeField, Field};
|
||||
use ark_std::{One, UniformRand, Zero};
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
pub struct IPA {
|
||||
@@ -15,8 +15,6 @@ pub struct IPA {
|
||||
#[allow(non_snake_case)]
|
||||
pub struct Proof {
|
||||
a: Fr,
|
||||
b: Fr, // TODO not needed
|
||||
G: EdwardsProjective, // TODO not needed
|
||||
l: Vec<Fr>,
|
||||
r: Vec<Fr>,
|
||||
L: Vec<EdwardsProjective>,
|
||||
@@ -42,11 +40,17 @@ impl IPA {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn commit(&self, a: &[Fr], r: Fr) -> EdwardsProjective {
|
||||
inner_product_point(a, &self.Gs) + self.H.mul(r.into_repr())
|
||||
pub fn commit(&self, a: &[Fr], r: Fr) -> Result<EdwardsProjective, String> {
|
||||
Ok(inner_product_point(a, &self.Gs)? + self.H.mul(r.into_repr()))
|
||||
}
|
||||
|
||||
pub fn ipa(&mut self, a: &[Fr], b: &[Fr], u: &[Fr], U: &EdwardsProjective) -> Proof {
|
||||
pub fn ipa(
|
||||
&mut self,
|
||||
a: &[Fr],
|
||||
b: &[Fr],
|
||||
u: &[Fr],
|
||||
U: &EdwardsProjective,
|
||||
) -> Result<Proof, String> {
|
||||
let mut a = a.to_owned();
|
||||
let mut b = b.to_owned();
|
||||
let mut G = self.Gs.clone();
|
||||
@@ -69,12 +73,12 @@ impl IPA {
|
||||
l[j] = Fr::rand(&mut self.rng);
|
||||
r[j] = Fr::rand(&mut self.rng);
|
||||
|
||||
L[j] = inner_product_point(&a_lo, &G_hi)
|
||||
L[j] = inner_product_point(&a_lo, &G_hi)?
|
||||
+ self.H.mul(l[j].into_repr())
|
||||
+ U.mul(inner_product_field(&a_lo, &b_hi).into_repr());
|
||||
R[j] = inner_product_point(&a_hi, &G_lo)
|
||||
+ U.mul(inner_product_field(&a_lo, &b_hi)?.into_repr());
|
||||
R[j] = inner_product_point(&a_hi, &G_lo)?
|
||||
+ self.H.mul(r[j].into_repr())
|
||||
+ U.mul(inner_product_field(&a_hi, &b_lo).into_repr());
|
||||
+ U.mul(inner_product_field(&a_hi, &b_lo)?.into_repr());
|
||||
|
||||
let uj = u[j];
|
||||
let uj_inv = u[j].inverse().unwrap();
|
||||
@@ -82,41 +86,52 @@ impl IPA {
|
||||
a = vec_add(
|
||||
&vec_scalar_mul_field(&a_lo, &uj),
|
||||
&vec_scalar_mul_field(&a_hi, &uj_inv),
|
||||
);
|
||||
)?;
|
||||
b = vec_add(
|
||||
&vec_scalar_mul_field(&b_lo, &uj_inv),
|
||||
&vec_scalar_mul_field(&b_hi, &uj),
|
||||
);
|
||||
)?;
|
||||
G = vec_add_point(
|
||||
&vec_scalar_mul_point(&G_lo, &uj_inv),
|
||||
&vec_scalar_mul_point(&G_hi, &uj),
|
||||
);
|
||||
)?;
|
||||
}
|
||||
|
||||
// TODO assert len a,b,G == 1
|
||||
if a.len() != 1 {
|
||||
return Err(format!("a.len() should be 1, a.len()={}", a.len()));
|
||||
}
|
||||
if b.len() != 1 {
|
||||
return Err(format!("b.len() should be 1, b.len()={}", b.len()));
|
||||
}
|
||||
if G.len() != 1 {
|
||||
return Err(format!("G.len() should be 1, G.len()={}", G.len()));
|
||||
}
|
||||
|
||||
Proof {
|
||||
Ok(Proof {
|
||||
a: a[0],
|
||||
b: b[0],
|
||||
G: G[0],
|
||||
l,
|
||||
r,
|
||||
L,
|
||||
R,
|
||||
}
|
||||
})
|
||||
}
|
||||
pub fn verify(
|
||||
&self,
|
||||
x: &Fr,
|
||||
P: &EdwardsProjective,
|
||||
p: &Proof,
|
||||
r: &Fr,
|
||||
u: &[Fr],
|
||||
U: &EdwardsProjective,
|
||||
) -> bool {
|
||||
) -> Result<bool, String> {
|
||||
let mut q_0 = *P;
|
||||
let mut r = *r;
|
||||
|
||||
// TODO compute b & G without getting them in the proof package
|
||||
// compute b & G from s
|
||||
let s = build_s(u, self.d as usize);
|
||||
let bs = powers_of(*x, self.d);
|
||||
let b = inner_product_field(&s, &bs)?;
|
||||
let G = inner_product_point(&s, &self.Gs)?;
|
||||
|
||||
#[allow(clippy::needless_range_loop)]
|
||||
for j in 0..u.len() {
|
||||
@@ -127,46 +142,103 @@ impl IPA {
|
||||
r = r + p.l[j] * uj2 + p.r[j] * uj_inv2;
|
||||
}
|
||||
|
||||
let q_1 =
|
||||
p.G.mul(p.a.into_repr()) + self.H.mul(r.into_repr()) + U.mul((p.a * p.b).into_repr());
|
||||
let q_1 = G.mul(p.a.into_repr()) + self.H.mul(r.into_repr()) + U.mul((p.a * b).into_repr());
|
||||
|
||||
q_0 == q_1
|
||||
Ok(q_0 == q_1)
|
||||
}
|
||||
}
|
||||
|
||||
fn inner_product_field(a: &[Fr], b: &[Fr]) -> Fr {
|
||||
// TODO require lens equal
|
||||
// s = (
|
||||
// u₁⁻¹ u₂⁻¹ … uₖ⁻¹,
|
||||
// u₁ u₂⁻¹ … uₖ⁻¹,
|
||||
// u₁⁻¹ u₂ … uₖ⁻¹,
|
||||
// u₁ u₂ … uₖ⁻¹,
|
||||
// ⋮ ⋮ ⋮
|
||||
// u₁ u₂ … uₖ
|
||||
// )
|
||||
fn build_s(u: &[Fr], d: usize) -> Vec<Fr> {
|
||||
let k = (f64::from(d as u32).log2()) as usize;
|
||||
let mut s: Vec<Fr> = vec![Fr::one(); d];
|
||||
let mut t = d;
|
||||
for j in (0..k).rev() {
|
||||
t /= 2;
|
||||
let mut c = 0;
|
||||
#[allow(clippy::needless_range_loop)]
|
||||
for i in 0..d {
|
||||
if c < t {
|
||||
s[i] *= u[j].inverse().unwrap();
|
||||
} else {
|
||||
s[i] *= u[j];
|
||||
}
|
||||
c += 1;
|
||||
if c >= t * 2 {
|
||||
c = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
s
|
||||
}
|
||||
|
||||
fn inner_product_field(a: &[Fr], b: &[Fr]) -> Result<Fr, String> {
|
||||
if a.len() != b.len() {
|
||||
return Err(format!(
|
||||
"a.len()={} must be equal to b.len()={}",
|
||||
a.len(),
|
||||
b.len()
|
||||
));
|
||||
}
|
||||
let mut c: Fr = Fr::zero();
|
||||
for i in 0..a.len() {
|
||||
c += a[i] * b[i];
|
||||
}
|
||||
c
|
||||
Ok(c)
|
||||
}
|
||||
|
||||
fn inner_product_point(a: &[Fr], b: &[EdwardsProjective]) -> EdwardsProjective {
|
||||
// TODO require lens equal
|
||||
fn inner_product_point(a: &[Fr], b: &[EdwardsProjective]) -> Result<EdwardsProjective, String> {
|
||||
if a.len() != b.len() {
|
||||
return Err(format!(
|
||||
"a.len()={} must be equal to b.len()={}",
|
||||
a.len(),
|
||||
b.len()
|
||||
));
|
||||
}
|
||||
let mut c: EdwardsProjective = EdwardsProjective::zero();
|
||||
for i in 0..a.len() {
|
||||
c += b[i].mul(a[i].into_repr());
|
||||
}
|
||||
c
|
||||
Ok(c)
|
||||
}
|
||||
|
||||
fn vec_add(a: &[Fr], b: &[Fr]) -> Vec<Fr> {
|
||||
// TODO require len equal
|
||||
fn vec_add(a: &[Fr], b: &[Fr]) -> Result<Vec<Fr>, String> {
|
||||
if a.len() != b.len() {
|
||||
return Err(format!(
|
||||
"a.len()={} must be equal to b.len()={}",
|
||||
a.len(),
|
||||
b.len()
|
||||
));
|
||||
}
|
||||
let mut c: Vec<Fr> = vec![Fr::zero(); a.len()];
|
||||
for i in 0..a.len() {
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
c
|
||||
Ok(c)
|
||||
}
|
||||
fn vec_add_point(a: &[EdwardsProjective], b: &[EdwardsProjective]) -> Vec<EdwardsProjective> {
|
||||
// TODO require len equal
|
||||
fn vec_add_point(
|
||||
a: &[EdwardsProjective],
|
||||
b: &[EdwardsProjective],
|
||||
) -> Result<Vec<EdwardsProjective>, String> {
|
||||
if a.len() != b.len() {
|
||||
return Err(format!(
|
||||
"a.len()={} must be equal to b.len()={}",
|
||||
a.len(),
|
||||
b.len()
|
||||
));
|
||||
}
|
||||
let mut c: Vec<EdwardsProjective> = vec![EdwardsProjective::zero(); a.len()];
|
||||
for i in 0..a.len() {
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
c
|
||||
Ok(c)
|
||||
}
|
||||
|
||||
fn vec_scalar_mul_field(a: &[Fr], b: &Fr) -> Vec<Fr> {
|
||||
@@ -184,26 +256,15 @@ fn vec_scalar_mul_point(a: &[EdwardsProjective], b: &Fr) -> Vec<EdwardsProjectiv
|
||||
c
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn powers_of(x: Fr, d: u32) -> Vec<Fr> {
|
||||
let mut c: Vec<Fr> = vec![Fr::zero(); d as usize];
|
||||
c[0] = x;
|
||||
for i in 1..d as usize {
|
||||
// TODO redo better
|
||||
c[i] = c[i - 1] * x;
|
||||
}
|
||||
c
|
||||
}
|
||||
|
||||
// fn inner_product<T>(a: Vec<T>, b: Vec<T>) -> T {
|
||||
// // require lens equal
|
||||
// let mut c: T = Zero();
|
||||
// for i in 0..a.len() {
|
||||
// c = c + a[i] * b[i];
|
||||
// }
|
||||
// c
|
||||
// }
|
||||
|
||||
#[cfg(test)]
|
||||
#[allow(non_snake_case)]
|
||||
mod tests {
|
||||
@@ -211,12 +272,6 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_utils() {
|
||||
// let a = Fr::from(1 as u32);
|
||||
// let b = Fr::one();
|
||||
// println!("A: {:?}", Fr::from(1 as u32));
|
||||
// println!("A: {:?}", a);
|
||||
// println!("B: {:?}", b);
|
||||
|
||||
let a = vec![
|
||||
Fr::from(1 as u32),
|
||||
Fr::from(2 as u32),
|
||||
@@ -229,15 +284,41 @@ mod tests {
|
||||
Fr::from(3 as u32),
|
||||
Fr::from(4 as u32),
|
||||
];
|
||||
let c = inner_product_field(&a, &b);
|
||||
println!("c: {:?}", c);
|
||||
|
||||
// let result = 2 + 2;
|
||||
// assert_eq!(result, 4);
|
||||
let c = inner_product_field(&a, &b).unwrap();
|
||||
assert_eq!(c, Fr::from(30 as u32));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_inner_product() {
|
||||
fn test_homomorphic_property() {
|
||||
let d = 8;
|
||||
let ipa = IPA::new(d);
|
||||
|
||||
let a = vec![
|
||||
Fr::from(1 as u32),
|
||||
Fr::from(2 as u32),
|
||||
Fr::from(3 as u32),
|
||||
Fr::from(4 as u32),
|
||||
Fr::from(5 as u32),
|
||||
Fr::from(6 as u32),
|
||||
Fr::from(7 as u32),
|
||||
Fr::from(8 as u32),
|
||||
];
|
||||
let b = a.clone();
|
||||
|
||||
let mut rng = ark_std::rand::thread_rng();
|
||||
let r = Fr::rand(&mut rng);
|
||||
let s = Fr::rand(&mut rng);
|
||||
|
||||
let vc_a = ipa.commit(&a, r).unwrap();
|
||||
let vc_b = ipa.commit(&b, s).unwrap();
|
||||
|
||||
let expected_vc_c = ipa.commit(&vec_add(&a, &b).unwrap(), r + s).unwrap();
|
||||
let vc_c = vc_a + vc_b;
|
||||
assert_eq!(vc_c, expected_vc_c);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_inner_product_argument_proof() {
|
||||
let d = 8;
|
||||
let mut ipa = IPA::new(d);
|
||||
|
||||
@@ -257,8 +338,8 @@ mod tests {
|
||||
|
||||
let r = Fr::rand(&mut ipa.rng);
|
||||
|
||||
let mut P = ipa.commit(&a, r);
|
||||
let v = inner_product_field(&a, &b);
|
||||
let mut P = ipa.commit(&a, r).unwrap();
|
||||
let v = inner_product_field(&a, &b).unwrap();
|
||||
|
||||
let U = EdwardsProjective::rand(&mut ipa.rng);
|
||||
|
||||
@@ -270,8 +351,8 @@ mod tests {
|
||||
|
||||
P = P + U.mul(v.into_repr());
|
||||
|
||||
let proof = ipa.ipa(&a, &b, &u, &U);
|
||||
let verif = ipa.verify(&P, &proof, &r, &u, &U);
|
||||
let proof = ipa.ipa(&a, &b, &u, &U).unwrap();
|
||||
let verif = ipa.verify(&x, &P, &proof, &r, &u, &U).unwrap();
|
||||
assert!(verif);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user